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Abstract

Statistical agent based model (SABM) aims at reverse-engineering fi-
nancial markets. In order to do so, more than ten thousand of mar-
ket strategies are sampled to represent the agents within the market.
The SABM is very computationally intensive, especially the backtest-
ing function within it, as identified by Professor Sornette’s research
group. Thus, the backtesting function needs to see some time cutting
measures in order to reduce the execution time of SABM.

The main task of this thesis was to translate the backtesting function
from Python to Go in order to profit from the speed of Go. In addi-
tion, after the naı̈ve version of the backtesting function was written
in Go, the implementation was analysed to find the lines that needed
optimisation. After localising the most time-consuming functions us-
ing CPU profiling, the identified functions were optimised, tested, and
benchmarked until an optimised version of the backtesting function
was reached.

This optimised version realised a speed-up of a factor 2.9× in compar-
ison to the vectorised backtesting function in Python, that is to say it
only uses 34.63% of the vectorised version’s execution time.
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Chapter 1

Introduction

For some time, it has been a trend among specialists to increasingly regard
economic systems as complex systems. Complex systems lie in between the
traditional economic theory and econometrics. The traditional economic the-
ory assumes that we only have rational agents, whereas Econometrics tries
to find statistical correlation between the data to explain observed market
behaviour. A complex system defines simple rules for the agents and at-
tempts to aggregate a macro state out of all micro state interactions. This
is the reason why it is not feasible to find a mathematical formula that de-
scribes the macro level with a few parameters without understanding how
the macro level arises from the micro level. Here, agent based modelling
(ABM) comes into play. It designs a virtual economic system with computer
agents which in turn should simulate the behaviour from the real agents.
As long as the artificial computer agents cover the main characteristics from
the real agents, ABM should be able to reproduce the stylized facts of the
real world [1] [2] [3].

Statistical agent based modelling aims at reverse-engineering financial mar-
kets. In order to do so, more than ten thousand of market strategies are sam-
pled to represent the agents within the market. To construct the so-called
meta-state of the market, the detailed information of each sampled market
strategy at each time step is required. Using this approach is very difficult
because of the computational complexity when doing out-of-sample predic-
tions [4]. In addition to the computational complexity, the implementation
of the statistical agent based modelling (SABM) was done in Python, which
does not necessarily give the best performance among the available program-
ming languages. In the SABM Python scripts, the before mentioned detailed
information is retrieved by the so-called backtesting function. Backtesting
is the process where a trading strategy gets tested on historical data to see
how it performs and to analyse the profitability and risk of an agent [39].
The backtesting function is very computationally intensive, which limits the
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1. Introduction

ability of SABM to sample more market strategies. This limitation might
eventually reduce the predictive power of SABM. Thus we need to perform
some time cutting measures to the backtesting function in order to make
SABM fast and accurate.

Professor Sornette’s research group came up with the idea to re-implement
the backtesting function of SABM in another, yet, more efficient language,
namely Go. It is a rather newly developed language based on C and de-
signed by Google and it has already gained a reputation as being very fast.
The goal is to exploit the performance gains of Go compared to Python.

The main task of this thesis was therefore to translate the backtesting func-
tion from Python into Go in order to profit from the overall higher perfor-
mance of Go. In addition, after the naı̈ve version was written, the implemen-
tation was analysed to find the subroutines that needed optimisation. This
optimisation pattern was applied repeatedly until a satisfying speed-up was
reached.

In Chapter 2 Methodology, the main characteristics of both Python and Go
are presented. In the case of Go, this also includes some language specific
highlights which come in handy in the subsequent chapter. In Chapter 3
Experiments, the Python implementation of the backtesting function is in-
troduced and then its implementation in Go. Subsequently, the optimisation
approach is outlined accompanied by the corresponding timing results. In
Chapter 4, a conclusion of the results found in the thesis is given which also
outlines some possibilities of future improvements and steps that might lie
ahead. The longer listings of Chapters 2 and 3 were moved to the appendix.
All expressions marked with a + are explained in the glossary which is also
to be found in the appendix.

2



Chapter 2

Methodology

In the following subchapters, the two languages Python and Go are briefly
described and then compared according to the benchmarks from [21]. Fur-
thermore, the features of Go which are crucial for this thesis are discussed.

2.1 Python

Python was released in the year 1991 as an open source language. As it
is a dynamic typed language, it supports multiple programming paradigms
such as object oriented+, imperative+, functional+ and procedural programming+.
Furthermore, there are a myriad of libraries available for Python as well as
interfaces to many system calls. Altogether, Python is easily accessible and
a very attractive programming language to work with.
Even though Python seems to be a totally interpreted language at first
glance, it is actually also a rather compiled language at the second. However,
Python is a lot more interpreted than Go, which is a completely compiled
language [18] [19]:(What is Python?). For further details the reader should feel
free to consult [23].

A program written in Python often runs slower than an equivalent imple-
mentation in C or C++. This is due to the fact that it is a higher level
language compared to C and C++ and that it is highly dynamic and partly
interpreted. [20]

2.2 Go

Go was released in 2012 as an open source project by Google. The intro-
duction of multicore processors, networked systems, massive computation
clusters, and the web programming model slowed down the software devel-
opment at Google significantly and made it clumsier. All the well-known
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2. Methodology

languages, as for example Python and C or C++, were not equipped to
suddenly be used on multicore processors and by various developers simul-
taneously via the web. For these languages, new libraries were released to
adapt to these changes but none of them was able to do so completely sat-
isfactory. Generally speaking, Go was developed to address exactly these
problems and to introduce a language which works well on multicores and
clusters from the beginning.
Furthermore, Google produced with Go a language which enhances the time
used to compile a program immensely. Generally, today’s server programs
potentially contain millions of lines of code which take up a lot of time to be
compiled ranging from minutes to hours. With Go, programs are compiled
almost instantanously [15]:(Abstract, Introduction).

Go is a procedural language with pointers, which is compiled. Furthermore,
it is concurrent, garbage-collected, statically typed and it includes a testing
package which enables code profiling, testing and benchmarking [17]. Go is
efficient, scalable and productive while bringing together the performance
and security from C and the speed of working with a dynamic language
like Python [16]. The goal of the dynamic part of Go is to create a working
environment which is arguably even more productive than Python’s. Addi-
tionally, it should be easy to learn, at least for those who are familiar with
the C family [15]:(Enter Go).

Semantics in Go differ sligthly from the ones in C. According to [15]:(Seman-

tics), the main differences are the following:

• It has no pointer arithmetic;

• there are no implicit numeric conversions;

• array bounds are always checked;

• there are no type aliases;

• ++ and -- are statements not expressions; and

• assignment is not an expression.

Additionally, there are also some larger adjustments to make when switch-
ing from C to Go, since Go includes concurrency and garbage collection. It
is important to keep in mind that Go is not completely memory safe when
programming concurrently. Further details are given in Subsection 2.6.2.

2.3 Python vs. Go

Setting the main characteristics of Python and Go side to side, we are able
to see the key differences and commonalities immediately.
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2.4. Benchmarking Python and Go

Python vs. Go
Characteristics Python Go
Created in year 1991 2012
Garbage Collector 3 3

Built-in concurrency 7 3

Scalability [15]:(Concurrency) (3) 3

Dynamic type system 3 7

Static type system 7 3

Interpreted language (3) 7

Compiled language (7) 3

Emphasises on code readability 3 3

Code blocks indentation curly brackets
Syntax that allows to express concepts in
possibly fewer lines than C/C++

3 3

Functions may return multiple values 3 3

Table 2.1: Go vs. Python differences and commonalities

Considering Table 2.1, both languages are garbage collected and have func-
tions that may return multiple values. Futhermore, they both emphasise on
code readability and thus their syntax potentially allows for shorter codes
than C or C++. Even though both claim to be scalable, Go generally seems
to scale a bit better as for example the code blocks are indicated with curly
brackets instead of indentations, which increases the chances of finding mis-
takes by the naked eye [15]:(Pain points). In contrast, Python is a dynamic typed
and rather interpreted language [19] whereas Go is statically typed and a
complied language. Additionally, Go provides built-in concurrency [15],
which increases the efficiency significantly when used.

2.4 Benchmarking Python and Go

This section gives a quick overview on how Go compares to Python when
running an equivalent program. The results are from ’The Computer Lan-
guage Benchmarks Game’ and there the benchmarks were run on a quad-
core 2.4Ghz Intelr Q6600r with 4GB of RAM and 250GB SATA II disk
drive; using UbuntuTM 17.10 Linux x64 4.13.0-16-generic [22]. Subsequent
the results are summarised in Table 2.2 and Figures 2.1 and 2.2.

Except for the regex-redux program, Python takes between 173% and 5111%
of the time Go needs to run the corresponding program. Thus, Go is up
to 51.11× faster than Python! Therefore, the hopes of Professor Sornette’s
research group to obtain substancial increase in speed when implementing
SABM in Go are definitely justified. As already mentioned in Section 2.1,
Python’s rather slow performance can be explained by the fact that Python
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2. Methodology

is a higher-level, dynamic and interpreted language compared to Go which
is very close to C and C++.

Go versus Python 3 [21]
Benchmark tasks Go timing Python timing Go vs. Python
fasta 2.17s 110.91s 5111%
mandelbrot 5.48s 273.43s 4990%
spektral-norm 3.94s 188.83s 4793%
n-body 21.47s 787.02s 3666%
fannkuch-redux 14.44s 483.79s 3350%
k-nucleotide 14.98s 84.73s 566%
reverse-
complement

0.54s 2.82s 522%

binary-trees 34.42s 86.90s 252%
pidigits 2.03s 3.51s 173%
regex-redux 28.49s 14.86s 52%

Table 2.2: Go vs. Python timing results by ’The Computer Language Benchmarks Game’

0 2 4 6 8
Benchmark task

0

100

200

300

400

500

600

700

800

Ti
m

e 
in

 se
co

nd
s

Python
Go

Figure 2.1: Go vs. Python timing results dis-
played as bars
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Figure 2.2: Go vs. Python timing results dis-
played as graphs

2.5 Profiling Go Programs

This chapter examines how to use profiling to optimise Go programs. Fur-
thermore, it explains how to benchmark and test Go functions.

2.5.1 Profiling

One advantage of Go are its built-in profiling tools with which a program
can be analysed and bottlenecks can be identified and addressed. Thus,
using these tools, the program can be improved and its running time de-
creased. To enable profiling however, the code has to be adjusted as shown
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2.5. Profiling Go Programs

in Listing A.1.
First, the libraries needed for profiling have to be loaded, in particular, flag
and runtime/pprof as done on the first few lines of Listing A.1. Second,
line 13 has to be added right above the main function. Third, lines 18 to
28 have to be inserted in the beginning of the main function. What these
changes actually generate is explained in a Go post as following:

’The new code defines a flag named cpuprofile, calls the Go
flag library to parse the command line flags, and then, if the
cpuprofile flag has been set on the command line, starts CPU
profiling redirected to that file. The profiler requires a final call
to StopCPUProfile to flush any pending writes to the file before
the program exits; we use defer to make sure this happens as
main returns.’ [24]

In order to run the CPU file in Listing A.1, a makefile as in Listing 2.1 is
used, which takes care of all the steps needed and sets the correct flags.
The neat thing about a makefile is, that as soon as all parts of the pro-
gram are saved, one only needs to type make <keyword> into the shell for
everything to run smoothly. For the makefile in Listing 2.1 the keyword

is one of either main_cpu_profiling, run_main, run_cpu_profiling, or
main_cpu_profiling_run. Omitting the keyword altogether just runs all.
When all is run, in lines 3 to 4, the directive go build compiles the specified
program CPU_profiling.go and returns a executable called
main_cpu_profiling. As a next step, in lines 6 to 7, the directive
./main_cpu_profiling runs the executable obtained before.
Lines 10 to 13 are then responsible for the CPU profiling. First,
main_cpu_profiling is compiled again in line 10 to make sure any possi-
ble changes are included. Subsequently, the directive main_cpu_profiling

is run, which invokes the code on the lines 12 to 13. Line 13 then runs the
modified main function whilst doing the CPU profiling and saving the data
into the file main_cpu_profiling.prof.
During profiling, the Go program stops roughly 100 times per second to
record a sample of the current state in order to count how long a particular
function is running [24].

Listing 2.1: CPU profiling makefile

1 all: main_cpu_profiling run_main

2

3 main_cpu_profiling: CPU_profiling.go

4 go build -o $@ $^

5

6 run_main:

7 ./main_cpu_profiling

8
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2. Methodology

9 # cpu profiling

10 run_cpu_profiling: main_cpu_profiling main_cpu_

profiling_run

11

12 main_cpu_profiling_run:

13 ./main_cpu_profiling -cpuprofile main_cpu_profiling

.prof

After running the makefile, it is time to call
go tool pprof main_cpu_profiling main_cpu_profiling.prof

from the shell to start up the performance analysis tool and interpret the pro-
file. Important commands for doing so are topN and web. The first command
displays the top N samples with regard as to how many times the counter
stopped while these functions were in action. Thus, the functions at the top
of this ranking were taking up the majority of the execution time. The latter
command writes a graph of the profile data in SVG format and opens it in
a web browser [24], but note that this necessarily requires graphviz. To plot
the graph as a PDF use pdf instead of web, an example of which is shown
in Figure 2.3 (refer to this link for a larger example1). Every box represents
a single function and its size corresponds to the number of samples of the
particular function counted during the profiling. An edge from box A to B
corresponds to A calling B. The colors range from red for boxes and edges
which were called the most over orange to grey for the ones called the least.
Edges that were used a lot are also marked by being wider. Using this intu-
itive graph to spot the time intensive functions is fast and simple. Hence, it
helps to set the optimisation target in an efficient way.

2.5.2 Benchmarks [25] [27]

Benchmarks are very useful to measure the performance of a function in Go
and they are a good way to track any performance improvement after an
optimisation attempt. Thus a concise overview on how to write and run a
benchmark is given in the following paragraphs.
Note that according to Dave Cheney, modern CPU rely heavily on active
thermal management which can add noise to benchmark results [25].

One method to write a benchmark is to first create a file with an arbitrary
name, for example the same name as the file containing the functions which
are to be benchmarked. Then, very importantly _test has to be added to
the name. Concretely, consider the file of the function to be benchmarked
called zurich.go, then a suitable name for the file containing the bench-
marks would be zurich_test.go.
A benchmark function always has to start with Benchmark, otherwise the

1https://battilanablog.files.wordpress.com/2017/11/cpu_profile.pdf

8

https://battilanablog.files.wordpress.com/2017/11/cpu_profile.pdf


2.5. Profiling Go Programs

testing driver will not recognise it as such. The test driver runs the bench-
marks several times, every time increasing b.N until the driver is satisfied
with the stability of the benchmark. All benchmarks contain a for loop
which runs the function b.N times. An example of an actual benchmark
running for various inputs is given below. In order to enable the benchmark
function to run on different inputs to the original program, a helper function
can be introduced. This helper function allows for different input values to
be fed to the program without having to hard code every single one of them.

This process is easier to understand when seen on a concrete example. Thus,
consider the Listings A.2 and A.3. There, the function
benchmark_concurrent_binary_slice is declared on line 24 and takes
b *testing.B, num_goroutines int, input []float64, and
fn concurrent_binary_slice as arguments. Note that the function name
starts with a lower case b, hence it is a function which is only visible in the
main package. The for loop mentioned above is stated on lines 26 to 28. The
variables on line 23, 25 and the assignment on line 27 are needed to avoid
elimination during compiler optimisations.

In the Listing A.3 on line 11, the function
BenchmarkAnnualVolFromDailyReturns_concurrent_1 is declared, which
is the benchmark function run by the driver. This can be seen as it is writ-
ten with a capital B and satisfies the requested signature by only having
b *testing.B as an argument. The function annualVolFromDailyReturns

is run with different num_goroutines on lines 11 to 21.

While being in the same directory as the benchmark files are saved, run the
following command in the shell to invoke the benchmark functions from
above: go test -bench=.

The -bench=<function_name> flag passes a chosen benchmark function to
the driver and if . is used instead of <function_name>, all valid functions in
the benchmark file are passed. The output produced is shown in Listing 2.2,
where the results from the benchmark functions are displayed on lines 4 to
8. On these lines, the second entries show how many times the loop body in
Listing A.2 was executed. The third entries display the arithmetic mean over
the b.N runs per function call. Line 4 states that the mean execution time of
the function BenchmarkAnnual...Returns_serial is 6133749ns (6.1ms) on
the machine named in 3.0.1 (i).

Listing 2.2: Output of go test −bench=.

1 $ go t e s t −bench =.
2 goos : darwin
3 goarch : amd64
4 BenchmarkAnnual . . . Returns s e r i a l −4 200 6133749 ns/op
5 BenchmarkAnnual . . . Returns conc 1−4 200 6119399 ns/op
6 BenchmarkAnnual . . . Returns conc 4−4 500 2719709 ns/op
7 BenchmarkAnnual . . . Returns conc 8−4 1000 2768626 ns/op

9



2. Methodology

8 BenchmarkAnnual . . . Returns con 32−4 500 2376696 ns/op
9 PASS

10 ok / Users/ b a t t i l a n a s t / . . . / Benchmarking 32 .330 s

2.5.3 Tests [27]

Testing functions in Go is quite similar to benchmarking with just a few ad-
ditional tweaks.
Equivalently to producing benchmarks, the name of the file has to end with
_test.go, otherwise the testing driver will not be able to recognise the test-
ing function. Using again zurich_test.go as an example, a test unit is writ-
ten by choosing a function name which starts with Test and has only one
calling argument, namely t *testing.T. Otherwise, the compiler throws
an error. To increase usability, the test unit was split up into a function body
in the template file and the actual test file. Note that all the function names
in the template start with lower case t, thus they are only visible within the
main package. In comparison, the function names in the test file start with
an upper case T. In the end, the unit test gets called by the driver and runs
the specified tests, as for example seen in Listing A.5 on lines 8 to 10.

As done similarly in Subsection 2.5.2, run the following command in the
shell to invoke the test functions from above when being in the same direc-
tory as the test files are saved: go test -bench=.

As immediately obvious, this directive is the same as the one used for bench-
marks. However, Subsection 2.5.2 failed to mention that apart from bench-
marks, it also runs all test functions which then results in an output as given
in Listing 2.2. There, the testing result is summarised on line 9 with PASS, as
all tests have finished successfully. If this was not the case, the shell would
enlist an output as specified by the programmer. For instance, in Listing A.4,
the output in case of failure is specified on lines 22 and 25.

2.6 Concurrency

Go provides built-in concurrency in the form of goroutines (light-weight
processes+) [15]:(Abstract) [28]:(Concurrency/Goroutines). However, before fully analysing
concurrency in Go, it is important to make sure the difference of concurrency
and parallelism is well understood.

2.6.1 Concurrency vs. Parallelism

Definition 1 (Concurrrency) [29]
A program which is a composition of independently executing light-weight pro-
cesses.

10



2.6. Concurrency

Definition 2 (Parallelism) [29]
A program which executes simultaneous (possibly related) computations on different
CPUs.

It is imoprtant to note that concurrency is about dealing with lots of things at
once in one process, that is to say multiple light-weight processes running
on one CPU. In comparison, parallelism is about doing lots of things at once
with multiple kernel threads running at once on different CPUs. In other
words, concurrency describes the structure of a code and parallelism is a
certain form of execution [29].

2.6.2 Concurrency in Go

This subsection aims at explaining how Go handles concurrency by first
describing how to share data in a concurrent environment and then intro-
ducing goroutines. Thirdly, channels+ are looked at in more detail and last
but not least, parallelisation in Go is explained.

Concurrent Communication

In most languages, it is difficult to correctly access shared data without caus-
ing race conditions+. Go takes another approach than many by exchang-
ing shared data over channels+ to make sure that different light-weight
processes+ cannot access the data at the same time. When sticking to
channels+, data races+ are by design not allowed to occur [28]:(Concurren-

cy/Share by communicating). The Go developers reduced the idea behind this de-
sign to the following slogan, which turns up in every corner of the web
when searching for Go and concurrent:

’Do not communicate by sharing memory; instead, share mem-
ory by communicating.’ [32] [15]:(Concurrency) [28]:(Concurrency/Share

by communicating)

Programmers have to use channels+ with caution, since not every task is
served best using them. Go comes with a built-in library called sync, which
also provides mutex+. A mutex+ is best used for small problems like for
instance increasing the reference count, where using channels+ would be
less efficient. Clearly, the high-level approach using channels+ makes devel-
oping correct concurrent programs easier, since it inherently manages data
access, that is to say there is no synchronisation needed. This approach was
inspired by Hoare’s Communicating Sequential Processes (CSP)+ [28]:(Con-

currency/Share by communicating).

Goroutines

Google chose the name goroutine because already existing terms with a sim-
ilar meaning have been used inconsistently throughout literature and are

11



2. Methodology

thus not clearly defined.

Definition 3 (Goroutine) [28]:(Concurrency/Goroutines)

A function executing concurrently with other goroutines in the same address space.

A goroutine is a light-weight process+, which costs a bit more than the al-
location of stack space. The initial stacks are small and when more space is
needed, it is allocated (or freed) on the heap as required.
The goroutines are multiplexed onto multiple kernel threads such that when
one routine blocks because it is waiting, another can be scheduled and run.
To spawn a new goroutine within a program, just prefix a function or method
call with the go keyword. When the forked function or method completes,
the goroutine exits silently [28].

Channels

To enable goroutines to exchange information, channels+ are used to send
and receive data. There are two types of these channels+, buffered and
unbuffered (or synchronous) ones. When initialising a buffered channel+, a
capacity number N is defined, which determines the size of the buffer. When
a buffered channel+ is used for communication of two goroutines, the send-
ing one is able to send as many as N data points which then wait in the buffer
until the receiving goroutine drains them. Thus, the sending goroutine is not
blocked and can continue with execution. If the buffer is full however, the
sending goroutine has to wait until a space is freed up on the buffer and
then, it therefore blocks further execution for some time. An unbuffered
channel+ is the special case of a buffered channel+ with capacity number
N=0. When using an unbuffered channel+, a sending goroutine therefore
always blocks until the receiving one is ready. Receiving goroutines always
block until there is an element to drain available on the channel+, whether
it is a buffered or an unbuffered one.
Unbuffered channels+ are useful to guarantee that two goroutines are in
a known state as either one has to wait for the other when exchanging in-
formation. This fact can be used by exchanging values insignificant to the
respective computations only to signal that the goroutines have reached a
certain state.

There are three way to initialise channels+, two for an unbuffered channel+

and one for a buffered one. On the first line in Listing 2.3, an unbuffered
channel+ for the exchange of integer values is allocated. Since an unbuffered
channel+ is just a buffered one with capacity zero, it can also be initialised
as shown on the second line. When choosing to use a buffered channel+ of
capacity larger than 0, it has to be initialised as shown on line 3 [28]:(Concur-

rency/Channels).

12



2.6. Concurrency

Listing 2.3: Examples of channel initialisations

1 channel1 := make(chan int) //

unbuffered channel of intergers

2 channel2 := make(chan int , 0) //

unbuffered channel of intergers

3 channel3 := make(chan int , 13) //

buffered channel of intergers

To illustrate the behaviour of channels+ in more detail, an implementation
of a semaphore+ with channels+ is shown in Listing 2.4. When choosing
the capacity of a channel+ to be 1, a mutex+ is obtained. Hence, channels+

can also be used for synchronisation. The limit a semaphore+ puts on the
throughput of data is here realised by limiting the number of running gor-
outines, that is to say the size of the buffer of the channel+, to N. Every
additional goroutine blocks when calling acquire(1) until there is a spot
left in the semaphore+ (i.e. a free spot in the buffered channel+) which
happens when a running goroutine calls release(1).

Listing 2.4: Semaphores implemented with channels [7]

1 type empty struct {}

2 type semaphore chan empty

3

4 sem = make(semaphore , N) // N = buffer size

5

6 // acquire n resources

7 func (s semaphore) acquire(n int) {

8 e := empty {}

9 for i := 0; i < n; i++ {

10 s <- e

11 }

12 }

13

14 // release n resources

15 func (s semaphore) release(n int) {

16 for i := 0; i < n; i++ {

17 <-s

18 }

19 }

Parallelisation

When the computation at hand can be parallelised, start as many goroutines
as the number of available CPU cores to do so. For instance, split up a
for loop into chunks and assign a chunk to every goroutine [28]. Then, the
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goroutines are multiplexed onto kernel threads and since there are exactly
the same number of goroutines as cores, every core should get exactly one
kernel thread to run. Unfortunately, it is not easy to force Go to use all avail-
able cores since there are always some processes running in the background.
Even tough [34] suggest there might be a workaround, the Go designers
seem not to have intended to provide one easily.
Looking at the parallelisation example from [28] in Listing 2.5, it launches
exactly numCPU goroutines and divides the for accordingly. The buffered
channel+ c with buffer size numCPU is used as a wait synchronisation in the
second for loop [28]:(Concurrency/Parallelisation).

Listing 2.5: Example for a parallel implementation [28]:(Concurrency/Parallelization)

1 import "runtime"

2

3 numCPU := runtime.NumCPU () // available number of CPU

cores

4

5 func (v Vector) DoAll(u Vector) {

6 c := make(chan int , numCPU) // Buffering

optional but sensible.

7 for i := 0; i < numCPU; i++ {

8 go v.DoSome(i*len(v)/numCPU , (i+1)*len(v)/

numCPU , u, c)

9 }

10 // Drain the channel , i.e. wait till a goroutines

finished

11 for i := 0; i < numCPU; i++ {

12 <-c // wait for one task to complete

13 }

14 // All done.

15 }

2.6.3 Different parallelisation paradigms

This section briefly describes the two (or three) main approaches taken
whilst optimising during the experiment as described in the next chapter.

For illustration, consider the function rolling max as shown in Listing 3.1,
which was tested during the optimisation process. The serial rolling max

takes as arguments a window_size and an input slice+ in which it looks for
the maximum. It does so by sliding a window of size window_size from left
to right over the input slice+ and continuously filling the output slice+ with
the found maximum in the respective window. The first window_size-1

entries in output are filled with zeroes by definition.
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Listing 2.6: Serial rolling max function

1 func rolling_max(input [] float64, window_size int) []

float64 {

2 var output = make ([] float64, len(input))

3 if len(input) > 0 {

4 for i := range input {

5 if i-( window_size -1) >= 0 {

6 output[i] = max_in_slice(input[i-( window_size

-1) : i+1])

7 }

8 }

9 } else { // empty input

10 fmt.Println (" rolling_max is panicking !")

11 panic(fmt.Sprintf ("%v", input))

12 }

13 return output

14 }

Splitting up Loops

In principle, it uses the same approach as the parallelisation in Listing 2.5.
However, there are some details that have to be taken care of concerning
possible false sharing.

Consider Listing A.6 where we admit false sharing. Adopting the approach
from Listing 2.5, the concurrent function splits the for loop into the same
number of chunks as there are goroutines available. On lines 14 to 21 the
new for loop boundaries for each goroutine are being computed. In the
for loop on line 23, the goroutine with id computes only its own chunk
and saves the result into output. Note that as long as all the goroutines
run concurrently, this will not pose any problem, but when running parallel,
false sharing could occur. The barrier_wg.Wait() on line 28 synchronises
the function such that it only returns when all goroutines are finished.

To address the false sharing issue in Listing A.6, the function gets adjusted
in the following way: Every goroutine computes the rolling max in its
chunk and saves the result into the local slice+ loc_max instead of directly
into the output. Then, every goroutine saves its loc_max into the slice+

go_max[go_id] which was originally initialised on lines 7 to 10. Finally, the
results saved in go_max are aggregated into output.

Master Worker Paradigm

The master worker paradigm is a tasking model where the master splits the
for loop into tasks, which the worker pool executes one after the other until
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there are none left to do.

The concurrent version of rolling max in Listing A.8 uses the master worker
paradigm. The computation of the maximum in a certain window in the for

loop forms its own function here. This new rolling max function contains
three main building blocks. First, it forks a goroutine in which new tasks
are created in each iteration and loaded into the channel+ pending. The
task NewWork takes a function, an input and output slice+, and the first and
last indices of the window in the input slice+ as arguments. Since there is
no synchronisation, the main goroutine continues after spawning the new
goroutine on line 23 and starts executing the for loop on line 29. This for

loop starts the worker pool, of which each take the channels+ pending and
done as input arguments. Hidden behind the function Worker lie goroutines
which drain in the forever for loop one Work element from the channel+

pending. Then they start the computation and when they are finished, the
altered Work element is sent to the channel+ done to signal that one task
has been finished. On line 37, the function waits until all tasks have been
executed.
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Type: cpu
Time: Sep 17, 2017 at 4:18pm (CEST)
Duration: 1.13s, Total samples = 2.92s (257.63%)
Showing nodes accounting for 2.84s, 97.26% of 2.92s total
Dropped 44 nodes (cum <= 0.01s)
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Figure 2.3: Go program profile
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Chapter 3

Experiments

Explaining the main task of this thesis is split up into the following blocks:
First, the original Python code is looked at in detail, particularly
BackTest_C2a_MAR. This discussion includes both the loop based and the
vectorised implementation, and compares their running times. Secondly,
the workings of the initial naı̈ve translation into Go are shown, including
initial testing and timing. Thirdly, the CPU profiling results are discussed
and the most time consuming functions are highlighted. Fourthly, the op-
timisation part is explained which includes the rewriting of the most time
consuming function as well as discussing testing and timing. Lastly, the re-
sults are summarised by displaying the new improved CPU profiling plot
and examining the time improvement.
The data used for the backtesting function is the historic data from S&P 500+.

3.0.1 Configuration

In this subsection, the configuration used for this thesis is described by first
including the machines used and then the versions of Python and Go, re-
spectively.

Used Machine

The optimisations were done on the second machine and all the timings
were produced on the first one. To put the results into perspective, both
configurations are enlisted below:

(i) MacBook Pro (13-inch, 2017, Four Thunderbolt 3 Ports), 3.5 GHz Intel
Core i7, 16 GB 2133 MHz LPDDR3, macOS Sierra Version 10.12.6

(ii) MacBook Pro (13-inch, Early 2011), 2.7 GHz Intel Core i7, 16 GB 1333
MHz DDR3, macOS Sierra Version 10.12.6
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Python Version

The timing was run on the following python version.

1 $ python --version

2 Python 3.6.2 :: Anaconda , Inc.

Go Version

The current version as displayed below has been used throughout the exper-
iment.

1 $ go version

2 go version go1.9 darwin/amd64

3.1 Implementation in Python

Given was a tested and correctly running Python implementation. Subse-
quently, this code is looked at and briefly described as to what happens in
both, the loop based and the vectorised implementation.

3.1.1 Backtesting in Python

The BackTest_C2a_MAR function is based on the moving average ratio and
takes eight arguments. Among these arguments are a fast and a slow win-
dow, an entry and an exit level, profit, loss exit, and a prices and a returns
array. All these are processed and turned into a hash map res in which
several outputs are saved, such as the trading returns, the trading states,
trading profit and loss, trading drawdowns, hold profit and loss, trading
annualised returns, trading trailing max drawdown, fast and slow moving
average, and indicator (MAR ratio).

The loop based backtesting is divided into three stages.

(i) First up is the computation of the fast and slow moving average, fastMA
and slowMA, as well as the MAR ratio, which is here named indicator.
Next, the arrays (to be precise: the pandas series) for the second stage
are initialised and prepared. This already concludes the first stage.

(ii) In the second stage, the trading returns, trading states, trading profit
and loss, trading drawdowns and the hold profit and loss are com-
puted. The trading returns, trading states and profit and loss current
hold are computed while iterating through the entire time length. That
is every day, it is computed in which of the following states the agent
is: idle, to enter, hold or to exit.
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(iii) Then, the backtesting results for different backtesting lengths are com-
puted, in particular the trading annualised returns and the trading
trailing max drawdown.

These three stages describe all there is to the loop based backtesting function
in Listing A.9.

The vectorised backtesting function using the pandas library’s vectorised
functions works basically in the same way (see Listing A.10). The only dif-
ference lies in the fact that it is vectorised and therefore much more efficient
compared to using simple loops as above. In the timing results below, it is
shown how much of a difference in efficiency there is.

3.1.2 Timing in Python

For the following timing results of the Python implementation of the back-
testing function, the computer as described in 3.0.1 (i) was used and the
timings of 10 runs were averaged (see listing A.11).

Timing in Python
Backtesting averaged in ms std. dev. in ms pct.
Python loop based 2742.3350 47.406406 100%
Python vectorised 23.7179 4.562519 0.86%

Table 3.1: Timing of the Python implementation

Hence, vectorisation has already bought a speed-up of staggering 115×.

3.2 Implementation in Go

Finally, the main part of the thesis is discussed, namely the translation from
Python to Go and the subsequent optimisations. This chapter explains the
naı̈ve Go implementation and its timing results. Then, using the profiling
tools, it is shown in which order functions should be targeted to optimise. In
each optimisation step, unit tests were written to ensure correctness. After-
wards, a timing round was run using benchmarks to show the improvement.
This approach was repeated until there were no significant improvements to
make time-wise.

3.2.1 First Näıve Implementation in Go

The naı̈ve Go implementation of the backtesting function basically mimics
the loop based version implemented in Python. To be precise, only serial
functions were used. Rather quickly, it turned out that a large number of
library functions given in Python were not to be found for Go and had to
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be implemented one by one. After having done so, the correctness of the
implementation was checked by comparing the output with the one from
the Python implementation.

In the following, the timing results of the naı̈ve implementation are run
on 3.0.1 (i).

Timing in Python and Go
Backtesting averaged in ms std. dev. in ms pct. pct.
Python loop based 2742.3350 47.406406 100%
Python vectorised 23.7179 4.562519 0.86% 100%
Go serial 21.12 2.054707235 0.77% 89.05%

Table 3.2: Timing of the Python and Go implementation

Keep in mind that only a naı̈ve serial implementation in Go was used, which
already yields an improvement factor of roughly 1.1× compared to the vec-
torised Python version.

3.2.2 CPU Profiling of the Näıve Implementation in Go

When examining the profiling results and the output graph in Figure 3.1
(see here for a larger version1), it is clearly detectable which functions are
inefficient by means of using a larger portion of the running time.

From the profiling graph, it is quite straight forward to realise that the back-
testing actually uses a significant portion of the execution time, namely
59.77%, in max_in_slice. This suggests that max_in_slice should be op-
timised first. However, it is not efficiently parallelisable, but the calling
function rolling_max can call it concurrently and indeed this is how the
optimisation was approached.

3.2.3 Optimisation of rolling_max

The rolling_max function in Listing 3.1 returns a slice+ containing the mov-
ing maximum (rolling max) of the input slice+. It essentially loops through
the entire input slice+ moving a window from left to right and computing
the maximum within this window in each iteration.

Listing 3.1: Serial implementation of the rolling_max function

1 func rolling_max_serial(input [] float64, window_size

int) [] float64 {

2 var output = make ([] float64, len(input))

3 if len(input) > 0 {

1https://battilanablog.files.wordpress.com/2017/11/cpuprofile01.pdf
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Type: cpu
Time: Nov 3, 2017 at 8:50am (CET)
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Figure 3.1: CPU profile of the näıve implementation in Go

4 for i := 0; i < window_size; i++ {

5 output[i] = 0.0

6 }

7 for i := range input {

8 if i-( window_size -1) >= 0 {

9 output[i] = max_in_slice(input[i-( window_size

-1) : i+1])

10 }

11 }

12 } else { // empty input

13 fmt.Println (" rolling_max is panicking !")
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14 panic(fmt.Sprintf ("%v", input))

15 }

16 return output

17 }

Optimisation 1: Divide and Conquer

Opting for dividing and conquer in the same manner as explained in Sub-
section 2.6.3, that is splitting up the input slice+ for the different gorou-
tines, which each have a slot in go_max to save their result. In the end, this
new now concurrent function in Listing A.12 aggregates go_max to form the
output slice+. Note that this function also mitigates possible false sharing+

issues.

Optimisation 2: Divide and Conquer

This optimisation is almost the same as the first one, the only difference
being that it admits possible false sharing+ in the hope of saving time by
directly saving the result into the output as shown in Listing A.13.

Optimisation 3: Master Worker Paradigm

This optimisation uses the master worker paradigm in which the master
loads all tasks into the pending channel. From there, the worker pool, con-
sisting of several goroutines, drains task by task until there is nothing left to
do. For illustration, consider Listing A.14. In this case, a task corresponds to
the computation of one window which is done in the compute_window_max

function. In other words, it is an adopted version of the in 2.6.3 presented
master worker paradigm.

3.2.4 Tests on rolling_max

Next, it is important to check whether the optimised rolling_max functions
return the same output as the serial version. To do so, rolling_max is
checked for correctness by the test functions in Listing A.15. After running
these tests, the following message in Listing 3.2 is output, where PASS im-
plies that all tests ran successfully. Otherwise, an error message would have
been printed.

Listing 3.2: Results after checking rolling_max

1 $ go test

2 PASS

3 ok _/Users/battilanast /.../ Benchmarking 0.148s
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3.2.5 Benchmarks

In order to determine which optimisation yields the best performance, bench-
marks have to be run on them. These benchmarks are created and run as ex-
plained in Subsection 2.5.2. The benchmark results are displayed in Listing
3.3 with window_size = 261x5 and num_goroutines = a, where
a ∈ {1, 4, 8, 32}.

Listing 3.3: Results after benchmarking rolling_max

1 $ go test -bench=.

2 goos: darwin

3 goarch: amd64

4 BenchRMax_ser _261x5 200 6915321 ns/op

5 BenchRMax_ser 2_261x5 200 7166906 ns/op

6 BenchRMax_con _261x5_1 200 6913682 ns/op

7 BenchRMax_con _261x5_4 500 3729162 ns/op

8 BenchRMax_con _261x5_8 500 3634100 ns/op

9 BenchRMax_con _261x5_32 500 3739790 ns/op

10 BenchRMax_con 2_261x5_1 200 6767008 ns/op

11 BenchRMax_con 2_261x5_4 500 3570324 ns/op

12 BenchRMax_con 2_261x5_8 500 3461646 ns/op

13 BenchRMax_con 2_261x5_32 500 3452789 ns/op

14 BenchRMax_con 3_261x5_1 100 11408390 ns/op

15 BenchRMax_con 3_261x5_4 100 10295883 ns/op

16 BenchRMax_con 3_261x5_8 200 7705298 ns/op

17 BenchRMax_con 3_261x5_32 300 6165166 ns/op

18 PASS

19 ok _/Users/battilanast /.../ Benchmarking 173.560s

As the number of goroutines should best not blow-up in order to control the
size of the multiplexing overhead, the most efficient configuration is the one
displayed on line 12. There, the number of goroutines is num_goroutines=8
and the resulting execution time equals 3461646 ns/op. Thus, the best op-
timisation is obtained when optimising rolling_max with optimisation 2 of
Subsection 3.2.3 and using 8 gorutines. Finally, the backtesting function and
its helper function are adjusted such that these results are mirrored in their
performance.

3.2.6 Timing After First Optimisation in Go

After plugging in the optimised rolling_max into the backtesting function,
the timing has to evaluated anew. In the following Table 3.3 the timing
results are enlisted.
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Timing in Python and Go
Backtesting averaged in ms std. dev. in ms pct. pct. pct.
Python loop based 2742.3350 47.406406 100%
Python vectorised 23.7179 4.562519 0.86% 100%
Go serial 21.12 2.054707235 0.77% 89.05% 100%
Go opt. rolling max 14.172 1.246583319 0.52% 59.75% 67.10%

Table 3.3: Timing of the Python and Go implementation after the first optimisation

According to Table 3.3, the backtesting now only uses 59.75% of the running
time used by the vectorised approach in Python which is an improvement
by a factor of about 1.7×.

3.2.7 CPU Profiling of the First Optimisation in Go

Looking at the CPU profiling in Figure 3.2 after running the backtesting
with the optimised rolling_max function, it is observable that the portion
of the execution time spent in max_in_slice has now reduced from 59.77%
to 36.88%. (A larger version of Figure 3.2 is available on 2)

Subsequently, the optimisation steps described in Subsections 3.2.3 to 3.2.7
are repeated with all the other functions which use a lot of the execution
time of the backtesting function.

3.2.8 Timing of BackTest_C2a_MAR

After very the time consuming optimisation of all time intensive functions,
it is time to benchmark the entire BackTest_C2a_MAR function. The results
thereof are enlisted in Table 3.4.

Timing in Python and Go
Backtesting averaged in ms std. dev. in ms pct. pct. pct.
Python loop based 2742.3350 47.406406 100%
Python vectorised 23.7179 4.562519 0.86% 100%
Go serial 21.12 2.054707235 0.77% 89.05% 100%
Go opt. rolling max 14.172 1.246583319 0.52% 59.75% 67.10%
Go concurrent 8.214 1.045608577 0.30% 34.63% 38.89%

Table 3.4: Timing of the Python and Go implementation after the optimisation

Table 3.4 shows that the concurrent backtesting in Go only takes 34.63% of
the time of the vectorised version in Python which is a speed-up factor of
2.9×.

2https://battilanablog.files.wordpress.com/2017/11/cpuprofile02.pdf
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When examining the profiling results of the fully optimised BackTest_C2a_MAR

in Figure 3.3, it is noticeable that the total duration came down from 14.93s
to 9.22s. In addition, when looking at the rolling_max, the percentage of
the total execution time rose from 36.88% to 37.33%, however, the time spent
within it decreased from 9.96s to 8.34s. (A larger version of Figure 3.3 is
available on 3)

The complete and fully optimised code is available on 4.

3.3 Outlook

The next step is the integration of the optimised function into Python, in
other words, make the Go function directly callable from Python. This inte-
gration is already in the working but, unfortunately, it could not be finished
before the deadline of this thesis. I will continue working with the Chair
to finish the integration in the near future. Additionally, I am planning on
benchmarking my implemented helper functions against the gonum floats
library5 for possible further optimisation of the backtesting function. Then,
the research group of Professor Sornette’s could swap the old and time
intensive backtesting function implemented in Python with the optimised
function implemented in Go in order to profit from the speed-up without
rewriting the entire Python codebase.

3https://battilanablog.files.wordpress.com/2017/11/cpuprofile03.pdf
4https://battilana.uk/bachelor-thesis/
5https://github.com/gonum/gonum/tree/master/floats
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Figure 3.2: CPU profile with the optimised rolling_max function in Go
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Dropped 74 nodes (cum <= 0.11s)
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Figure 3.3: CPU profile with the fully optimised BackTest_C2a_MAR function in Go
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Conclusion

First, the loop based backtesting function in Python was translated to a naı̈ve
loop based implementation in Go. Astoundingly, this naı̈ve loop based im-
plementation is already as fast as the vectorised version of the backtesting
function in Python. To be precise, it is even about two milliseconds faster.
After localising the most time consuming function using CPU profiling, the
identified function was optimised, tested and benchmarked. Reiterating
these steps, namely CPU profiling, optimisation, testing and benchmarking,
an optimised version of the backtesting function was reached. This version
runs 2.9× faster than the vectorised backtesting in Python, that is to say it
only uses 34.63% of the vectorised version’s execution time.

However, there is still room for improvement of the backtesting function. For
instance, the number of goroutines used in each function within the back-
testing function could be tweaked further, such that it runs the fastest in
its intended environment. This environments is likely a cluster with many
more cores available than the machine used and described in Subsection
3.0.1 (i). Additionally, a timing test with randomly generated data should
be conducted, instead of only using the historic data from the S&P 500 in-
dex. Doing so, the speed up projected in this thesis could be confirmed.
Plus, introducing table based benchmarking could increase code readability
immensely.

In summary, the implementation and optimisation of the backtesting func-
tion in Go achieves a substantial speed-up.
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Appendix

A.1 Glossary

Channel ’is a model for interprocess communication and synchro-
nization via message passing. A message may be sent over a
channel, and another process or thread is able to receive mes-
sages sent over a channel it has a reference to, as a stream.
Different implementations of channels may be buffered or
not, and either synchronous or asynchronous.’ [13]

Communicating Sequential Processes ’(CSP) is a formal language
for describing patterns of interaction in concurrent systems.
It is [...] based on message passing via channels.’ [33]

Critical Section ’refers to an interval of time during which a thread
of execution accesses a shared resource, such as shared mem-
ory.’ [30]

Data Race confer race condition below.

False Sharing ’is a performance-degrading usage pattern that can
arise in systems with distributed, coherent caches at the size
of the smallest resource block managed by the caching mech-
anism. When a system participant attempts to periodically
access data that will never be altered by another party, but
that data shares a cache block with data that is altered, the
caching protocol may force the first participant to reload the
whole unit despite a lack of logical necessity. The caching
system is unaware of activity within this block and forces
the first participant to bear the caching system overhead re-
quired by true shared access of a resource.’ [36]
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Functional programming ’is a programming paradigm [...] that
treats computation as the evaluation of mathematical func-
tions and avoids changing-state and mutable data. It is a
declarative programming paradigm, which means program-
ming is done with expressions or declarations instead of
statements. In functional code, the output value of a func-
tion depends only on the arguments that are passed to the
function, so calling a function f twice with the same value for
an argument x produces the same result f(x) each time; this
is in contrast to procedures depending on a local or global
state, which may produce different results at different times
when called with the same arguments but a different pro-
gram state. Eliminating side effects, i.e., changes in state that
do not depend on the function inputs, can make it much eas-
ier to understand and predict the behavio[u]r of a program,
which is one of the key motivations for the development of
functional programming.’ [12]

Imperative programming ’is a programming paradigm that uses
statements that change a program’s state. In much the same
way that the imperative mood in natural languages expresses
commands, an imperative program consists of commands
for the computer to perform. Imperative programming fo-
cuses on describing how a program operates.’ [11]

Interpreted language ’is a programming language for which most
of its implementations execute instructions directly, without
previously compiling a program into machine-language in-
structions. The interpreter executes the program directly,
translating each statement into a sequence of one or more
subroutines already compiled into machine code.
The terms interpreted language and compiled language are
not well defined because, in theory, any programming lan-
guage can be either interpreted or compiled.’ [18]

Light-weight process (LWP) ’is a means of achieving multitask-
ing. In the traditional meaning of the term [...] a LWP runs
in user space on top of a single kernel thread and shares its
address space and system resources with other LWPs within
the same process.’ Sometimes LWP are also called user-level
threads which are implemented directly on top of a kernel
thread. [14]

Master/Worker ’(or sometimes also Master/slave) is a model of
communication where one device or process has unidirec-
tional control over one or more other devices. In some sys-
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tems a master is selected from a group of eligible devices,
with the other devices acting in the role of slaves.’ [35]

Multiplexer ’is a device that selects one of several analog or digi-
tal input signals and forwards the selected input into a single
line.’ [30]

Mutual Exclusion (also Mutex) ’is a property of concurrency con-
trol, which is instituted for the purpose of preventing race
conditions+; it is the requirement that one thread of execu-
tion never enter its critical section+ at the same time that
another concurrent thread of execution enters its own criti-
cal section+.’ [30]

Object-oriented programming ’(OOP) is a programming paradigm
based on the concept of ”objects”, which may contain data,
in the form of fields, often known as attributes; and code, in
the form of procedures, often known as methods. A feature
of objects is that an object’s procedures can access and often
modify the data fields of the object with which they are asso-
ciated (objects have a notion of ”this” or ”self”). [...] There
is significant diversity of OOP languages, but the most pop-
ular ones are class-based, meaning that objects are instances
of classes, which typically also determine their type.’ [9]

Procedural programming ’is a programming paradigm [...] based
upon the concept of the procedure call. Procedures, also
known as routines, subroutines, or functions [...], [which]
simply contain a series of computational steps to be carried
out. Any given procedure might be called at any point dur-
ing a program’s execution, including by other procedures or
itself. [...] Procedural programming languages are also im-
perative languages’. Examples of procedural programming
languages are C and Go. [10]

Race Condition (sometimes called data race) ’is the behaviour of
an electronic, software, or other system where the output is
dependent on the sequence or timing of other uncontrollable
events. It becomes a bug when events do not happen in the
order the programmer intended. The term originates with
the idea of two signals racing each other to influence the
output first.’ [31]

Semaphore ’is a variable or abstract data type used to control
access to a common resource by multiple processes in a con-
current system such as a multiprogramming operating sys-
tem.’ [40]
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Slices ’Go’s slice type provides a convenient and efficient means
of working with sequences of typed data. Slices are analo-
gous to arrays in other languages [...]’ [37]

S&P 500 ’The Standard & Poor’s 500, often abbreviated as the
S&P 500, or just the S&P, is an American stock market index
based on the market capitalisations of 500 large companies
having common stock listed on the NYSE or NASDAQ.’ [38]
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A.2 Listings of Chapter 2 Methodology

Listing A.1: CPU profiling

1 package main

2

3 import (

4 ...

5 "flag" // profiling

6 "runtime/pprof" // profiling

7 )

8

9 // functions up here

10 ...

11

12 //############### PROFILING ################

13 var cpuprofile = flag.String (" cpuprofile", "", "write

cpu profile to file")

14 //############### PROFILING end ############

15

16 func main() {

17 //############ PROFILING ###############

18 flag.Parse ()

19 if *cpuprofile != "" {

20 f, err := os.Create (* cpuprofile)

21 if err != nil {

22 log.Fatal(" could not create CPU profile: ", err

)

23 }

24 if err := pprof.StartCPUProfile(f); err != nil {

25 log.Fatal(" could not start CPU profile: ", err)

26 }

27 defer pprof.StopCPUProfile ()

28 }

29 //############ PROFILING end ###########

30 ...

31 // code here

32 ...

33 }

Listing A.2: Example of a benchmark template

1 package main

2

3 import (

4 "testing"
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5 "fmt"

6 )

7

8 // some type declaration for function for brevity

9 ...

10

11

12 //########### BENCHMARK TEMPLATES ###########

13 // as above but for unary functions

14 var res_serial_unary_slice [] float64

15 func benchmark_serial_unary_slice(b *testing.B, input

[]float64, fn serial_unary_slice) {

16 var r [] float64

17 for n := 0; n < b.N; n++ {

18 r = fn(input)

19 }

20 res_serial_unary_slice = r

21 }

22 // as above but for binary functions

23 var res_concurrent_binary_slice [] float64

24 func benchmark_concurrent_binary_slice(b *testing.B,

num_goroutines int , input [] float64, fn concurrent

_binary_slice) {

25 var r [] float64

26 for n := 0; n < b.N; n++ {

27 r = fn(input , num_goroutines)

28 }

29 res_concurrent_binary_slice = r

30 }

31 //######### BENCHMARK TEMPLATES end #########

Listing A.3: Example of a benchmark file containing benchmarks functions

1 package main

2

3 import (

4 "testing"

5 )

6

7 //############### BENCHMARKS ###############

8 func BenchmarkAnnualVolFromDailyReturns_serial(b *

testing.B) {

9 benchmark_serial_unary_slice(b, returns ,

annualVolFromDailyReturns)

10 }
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11 func BenchmarkAnnualVolFromDailyReturns_concurrent _1(

b *testing.B) {

12 benchmark_concurrent_binary_slice(b, 1, returns ,

annualVolFromDailyReturns_concurrent)

13 }

14 func BenchmarkAnnualVolFromDailyReturns_concurrent _4(

b *testing.B) {

15 benchmark_concurrent_binary_slice(b, 4, returns ,

annualVolFromDailyReturns_concurrent)

16 }

17 func BenchmarkAnnualVolFromDailyReturns_concurrent _8(

b *testing.B) {

18 benchmark_concurrent_binary_slice(b, 8, returns ,

annualVolFromDailyReturns_concurrent)

19 }

20 func BenchmarkAnnualVolFromDailyReturns_concurrent

_32(b *testing.B) {

21 benchmark_concurrent_binary_slice(b, 32, returns ,

annualVolFromDailyReturns_concurrent)

22 //############### BENCHMARKS end ###########

Listing A.4: Example of a test template

1 package main

2

3 import (

4 "testing"

5 "fmt"

6 )

7

8 // some type declaration for function for brevity

9 ...

10

11

12 //############# TEST TEMPLATES ##############

13 // as above but now testing a concurrent function

with binary input which returns a slice for

correctness

14 func test_serial_concurrent_binary_slice(t *testing.T

, input []float64, num_goroutines int , fn_serial

serial_unary_slice , fn_concurrent concurrent_

binary_slice) {

15 var fw_serial , fw_concurrent , sw_serial , sw_

concurrent []float 64

16 fw_serial = fn_serial(returns)

39



A. Appendix

17 sw_serial = fn_serial(returns)

18 fw_concurrent = fn_concurrent(returns , num_

goroutines)

19 sw_concurrent = fn_concurrent(returns , num_

goroutines)

20

21 if !is_equal(fw_serial , fw_concurrent , accuracy_

bench) {

22 fmt.Printf (" serial concurrent: fw_serial: %v
�fw concurrent: t.Errorf("serial concurrent: fw

serial not equal fw concurrent!")

23 }

24 if !is_equal(sw_serial , sw_concurrent , accuracy_

bench) {

25 fmt.Printf (" serial concurrent: sw_serial: %v

�sw concurrent: t.Errorf("serial concurrent: sw

serial not equal sw concurrent!")

26 }

27 }

28 //############# TEST TEMPLATES end ##########

Listing A.5: Example of a benchmark file containing test functions

1 package main

2

3 import (

4 "testing"

5 )

6

7 //############### TESTS ####################

8 func TestAnnualVolFromDailyReturns_concurrent(t *

testing.T) {

9 test_serial_concurrent_binary_slice(t, returns ,

4, annualVolFromDailyReturns ,

annualVolFromDailyReturns_concurrent)

10 }

11 func TestAnnualVolFromDailyReturns_concurrent 11(t *

testing.T) {

12 test_serial_concurrent_binary_slice(t, returns ,

4, annualVolFromDailyReturns ,

annualVolFromDailyReturns_concurrent 11)

13 }

14 func TestAnnualVolFromDailyReturns_concurrent 2(t *

testing.T) {
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15 test_serial_concurrent_binary_slice(t, returns ,

4, annualVolFromDailyReturns ,

annualVolFromDailyReturns_concurrent 2)

16 }

17 func TestAnnualVolFromDailyReturns_concurrent 3(t *

testing.T) {

18 test_serial_concurrent_binary_slice(t, returns ,

4, annualVolFromDailyReturns ,

annualVolFromDailyReturns_concurrent 3)

19 }

20 //############### TESTS end ################

Listing A.6: Concurrent rolling max admitting possible false sharing

1 func rolling_max_concurrent(input [] float64, window_

size , num_goroutines int) [] float64 {

2 var output = make ([] float64, len(input))

3 if len(input) > 0 {

4 num_items := len(input) - (window_size - 1)

5 var barrier_wg sync.WaitGroup

6 n := num_items / num_goroutines

7

8 for i := 0; i < num_goroutines; i++ {

9 barrier_wg.Add (1)

10 go func(go_id int) {

11 defer barrier_wg.Done()

12

13 // computing boundaries

14 var start , stop int

15 start = go_id*int(n) + (window_size - 1) //

starting index

16 // ending index

17 if go_id != (num_goroutines - 1) {

18 stop = start + n // Ending index

19 } else {

20 stop = num_items + (window_size - 1) //

Ending index

21 }

22

23 for i := start; i < stop; i++ {

24 output[i] = max_in_slice(input[i-( window_

size -1) : i+1])

25 }

26 }(i)

27 }
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28 barrier_wg.Wait()

29

30 } else { // empty input

31 fmt.Println (" rolling_max is panicking !")

32 panic(fmt.Sprintf ("%v", input))

33 }

34 return output

35 }

Listing A.7: Concurrent rolling max avoiding false sharing

1 func rolling_max_concurrent_noFalseSharing(input []

float64, window_size , num_goroutines int) []float

64 {

2 var output = make ([] float64, window_size -1, len(

input))

3 if len(input) > 0 {

4 num_items := len(input) - (window_size - 1)

5 var barrier_wg sync.WaitGroup

6 n := num_items / num_goroutines

7 go_max := make ([][] float64, num_goroutines)

8 for i := 0; i < num_goroutines; i++ {

9 go_max[i] = make ([] float64, 0, num_goroutines)

10 }

11 for i := 0; i < num_goroutines; i++ {

12 barrier_wg.Add (1)

13 go func(go_id int) {

14 defer barrier_wg.Done()

15

16 // computing boundaries

17 var start , stop int

18 start = go_id*int(n) + (window_size - 1) //

starting index

19 // ending index

20 if go_id != (num_goroutines - 1) {

21 stop = start + n // Ending index

22 } else {

23 stop = num_items + (window_size - 1) //

Ending index

24 }

25

26 loc_max := make ([] float64, stop -start)

27 idx := 0

28 for i := start; i < stop; i++ {
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29 loc_max[idx] = max_in_slice(input[i-( window

_size -1) : i+1])

30 idx++

31 }

32 go_max[go_id] = append(go_max[go_id], loc_max

...)

33

34 }(i)

35 }

36 barrier_wg.Wait()

37

38 for i := 0; i < num_goroutines; i++ {

39 output = append(output , go_max[i]...)

40 }

41

42 } else { // empty input

43 fmt.Println (" rolling_max is panicking !")

44 panic(fmt.Sprintf ("%v", input))

45 }

46 return output

47 }

Listing A.8: Concurrent rolling max function using the master worker paradigm during optimi-
sation attempt using the elements from [8]

1 func Worker(in chan *Work , out chan *Work) {

2 for {

3 t := <-in

4 t.Fn(t.input , t.output , t.start , t.end)

5 t.Completed = true

6 out <- t

7 }

8 }

9

10 func compute_window_max(input , output [] float64,

start , end int) {

11 output[end -1] = max_in_slice(input[start:end])

12 }

13

14 func rolling_max_concurrent(input [] float64, window_

size , num_goroutines int) [] float64 {

15 var output = make ([] float64, len(input))

16 if len(input) > 0 {

17 length := len(input)

18 num_items := length - (window_size - 1)
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19 pending := make(chan *Work)

20 done := make(chan *Work)

21

22 // load pending with work

23 go func() {

24 for i:=( window_size - 1); i<length; i++ {

25 pending <- NewWork(compute_window_max

, input , output , i-( window_size -1)

, i+1)

26 }

27 }()

28

29 // start workers

30 for i:=0; i<num_goroutines; i++ {

31 go func() {

32 Worker(pending , done)

33 }()

34 }

35

36 // wait till all work is done

37 for i:=( window_size - 1); i<num_items; i++ {

38 <- done

39 }

40

41 } else { // empty input

42 fmt.Println (" rolling_max is panicking !")

43 panic(fmt.Sprintf ("%v", input))

44 }

45 return output

46 }
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A.3 Listings of Chapter 3 Experiments

Listing A.9: Loop based backtesting implementation in Python

1 def BackTest_C2a_MAR(fw , sw , entry , exit , pexit ,

lexit , price , returns):

2 commissionRate = 0.0025

3 fastMA = pd.rolling_mean(price , fw)

4 slowMA = pd.rolling_mean(price , sw)

5 indicator = fastMA / slowMA # MAR

6

7 price = price ["1980":]

8 returns = returns ["1980":]

9 indicator = indicator ["1980":]

10

11 timeLen = len(price)

12 tradingReturns = pd.Series (0.0, index = price.

index)

13 tradingpnls = pd.Series (0.0, index = price.index)

14 pnlCurrentHold = pd.Series(index = price.index)

15 tradingStates = pd.Series (0.0, index = price.

index)

16 tradingState_t0 = "IDLE"

17 tradingState_t1 = "IDLE"

18

19 holdStartTime = -1

20 # 4 Available States , IDLE , TO_ENTER , HOLD , TO_

EXIT

21 for i in range(1, timeLen):

22 if tradingState_t0 == "IDLE":

23 if (indicator.iloc[i] > entry and

indicator.iloc[i-1] < entry): # when

MAR goes through entry_threshold from

below

24 tradingState_t1 = "TO_ENTER" # Update

the state for the next time step

t+1

25 tradingReturns.iloc[i] = -

commissionRate # Commission Fee is

paid at t0

26

27 if tradingState_t0 == "TO_ENTER":

28 holdStartTime = i

29 tradingState_t1 = "HOLD"

30 tradingReturns.iloc[i] = returns.iloc[i]
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31 tradingStates.iloc[i] = 1.0

32

33 if tradingState_t0 == "HOLD":

34 tradingReturns.iloc[i] = returns.iloc[i]

35 tradingStates.iloc[i] = 1.0

36 pnlCurrentHold.iloc[i] = (price.iloc[i] -

price.iloc[holdStartTime ]) / price.

iloc[holdStartTime] + 1

37

38 if (indicator.iloc[i] < exit and

indicator.iloc[i-1] > exit) or

pnlCurrentHold.iloc[i] < lexit or

pnlCurrentHold.iloc[i] > pexit:

39 # when MAR goer through exit_

threshold from above , or when

stopProfit , stopLoss reached

40 tradingState_t1 = "TO_EXIT"

41 tradingReturns.iloc[i] = returns.iloc

[i] - commissionRate

42 # Commission Fee is paid at t0, also

need to include returns at t0,

since agent exit market at t1

43

44 if tradingState_t0 == "TO_EXIT":

45 tradingState_t1 = "IDLE"

46

47

48

49 tradingState_t0 = tradingState_t1 # Update

50

51

52 res = pd.DataFrame(index = price.index)

53 res[" Trading Returns "] = tradingReturns

54 res[" Trading States "] = tradingStates

55 res[" Trading PNLs"] = pnlsFromReturns(

tradingReturns)

56 res[" Trading DrawDowns "] = drawdownsFromPnls(res

[" Trading PNLs "])

57 res["Hold PNLs"] = pnlCurrentHold

58

59

60

61

62
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63 ################### back -testing result for

different back -testing length ##########

64 ##### This part is vectorized ##########

65 btLenNames = ["10y", "5y", "2y", "1y", "6m", "3m

"]

66 btLens = [261 * 10, 261 * 5, 261 * 2, 261 * 1,

130, 65 ]

67 btLensInYear = [10.0, 5.0, 2.0, 1.0, 0.5, 0.25]

68 # back -testing window lengths , 10y, 5y, 2y, 1y, 6

m ,3m

69

70

71 for i in range(0, len(btLens)):

72 btLenName = btLenNames[i]

73 btLen = btLens[i]

74 btLenInYear = btLensInYear[i]

75 # Annualized Returns

76 res[" Trading Annualized Returns " + btLenName

] = (res[" Trading PNLs "].pct_change(btLen)

.add (1.0) ** (1.0/ btLenInYear) - 1.0 )

77

78 for i in range(0, len(btLens)):

79 btLenName = btLenNames[i]

80 btLen = btLens[i]

81 btLenInYear = btLensInYear[i]

82 # MaxDrawDowns

83 # btLen = Size of the moving window

84 res[" Trading Trailing MaxDrawDown " +

btLenName] = pd.rolling_max(res[" Trading

DrawDowns "], btLen)

85

86

87 #####################################

88 res[" fastMA "] = fastMA

89 res[" slowMA "] = slowMA

90 res[" Indicator "] = indicator

91 return res

Listing A.10: Vectorised backtesting implementation in Python

1 # VECTORIZATION WITH PANDAS

2 def BackTest_C2a_MAR_vec(fw , sw , entry , exit , pexit ,

lexit , price , returns):

3 # Vectorized Pandas
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4 # stopLoss and stopProfit are not considered at

current moment

5

6 fastMA = pd.rolling_mean(price , fw)

7 slowMA = pd.rolling_mean(price , sw)

8 indicator = fastMA / slowMA # MAR

9

10 price = price ["1980":]

11 returns = returns ["1980":]

12 indicator = indicator ["1980":]

13

14 indicatorShift = indicator.shift (1) # shift the

row/column by one

15

16 # some explanation would be nice ...

17 tradingSignal = pd.Series(index = price.index)

18 tradingSignal [( indicator >= entry) & (

indicatorShift < entry)] = 1 # ... ?

19 tradingSignal [( indicator <= exit) & (

indicatorShift > exit)] = -1 # TO_EXIT?

20 tradingSignal = tradingSignal.dropna ().diff() /

2.0

21 tradingSignal = tradingSignal[tradingSignal != 0]

22 tradingSignal = tradingSignal.fillna (1.0)

23

24 tradingStates = pd.Series(index = price.index)

25 tradingStates[tradingSignal.index] =

tradingSignal

26 tradingStatesNotFilled = tradingStates.copy() #

this guy will be needed for adding commission

fee to return series

27 tradingStates = tradingStates.shift (1).ffill () #

When a Signal Occurs , Trading is lagged by one

time step

28 tradingStates[tradingStates == -1] = 0

29 tradingStates = tradingStates.fillna (0)

30

31 tradingReturns = pd.Series(index = price.index)

32 tradingReturns[tradingStates == 1] = returns

33 tradingReturns[tradingStatesNotFilled == 1] = -

commissionRate

34 tradingReturns[tradingStatesNotFilled == -1] = -

commissionRate + returns

35 tradingReturns = tradingReturns.fillna (0)

48



A.3. Listings of Chapter 3 Experiments

36

37

38 res = pd.DataFrame(index = price.index)

39 res[" Trading Returns "] = tradingReturns

40 res[" Trading States "] = tradingStates

41 res[" Trading PNLs"] = (tradingReturns + 1).

cumprod ()

42 res[" Trading DrawDowns "] = 1 - res[" Trading PNLs

"].div(res[" Trading PNLs "]. cummax ())

43 res["Hold PNLs"] = pnlCurrentHold

44

45 ################### back -testing result for

different back -testing length ##########

46 ##### This part is vectorized ##########

47 btLenNames = ["10y", "5y", "2y", "1y", "6m", "3m

"]

48 btLens = [261 * 10, 261 * 5, 261 * 2, 261 * 1,

130, 65 ]

49 btLensInYear = [10.0, 5.0, 2.0, 1.0, 0.5, 0.25]

50 # back -testing window lengths , 10y, 5y, 2y, 1y, 6

m ,3m

51

52

53 for i in range(0, len(btLens)):

54 btLenName = btLenNames[i]

55 btLen = btLens[i]

56 btLenInYear = btLensInYear[i]

57 # Annualized Returns

58 res[" Trading Annualized Returns " + btLenName

] = (res[" Trading PNLs "].pct_change(btLen)

.add (1.0) ** (1.0/ btLenInYear) - 1.0 )

59

60 for i in range(0, len(btLens)):

61 btLenName = btLenNames[i]

62 btLen = btLens[i]

63 btLenInYear = btLensInYear[i]

64 # MaxDrawDowns

65 res[" Trading Trailing MaxDrawDown " +

btLenName] = pd.rolling_max(res[" Trading

DrawDowns "], btLen)

66

67

68 #####################################

69 return res
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Listing A.11: Backtesting timing implementation

1 ########## backgtesting loop based ##########

2 time_loop_ms = []

3 for i in range (0,10):

4 t0000 = time.time()

5 res0 = BackTest_C2a_MAR(fw , sw , entry , exit ,

pexit , lexit , price , returns)

6 t0001 = time.time()

7 time_loop_ms.append ((t0001-t0000) *1000)

8 print ("%1.0f, loop based: print("averaged timing

backtesting loop based:

9

10 ########## backgtesting vec ##########

11 time_vec_ms = []

12 for i in range (0,10):

13 t0000 = time.time()

14 res1 = BackTest_C2a_MAR_vec(fw , sw , entry , exit ,

pexit , lexit , price , returns)

15 t0001 = time.time()

16 time_vec_ms.append ((t0001-t0000) *1000)

17 print ("%1.0f, vec based: print("averaged timing

backtesting loop based:

Listing A.12: Concurrent rolling max with no false sharing

1 func rolling_max_concurrent(input [] float64, window_

size , num_goroutines int) [] float64 {

2 var output = make ([] float64, window_size -1, len(

input))

3 if len(input) > 0 {

4 num_items := len(input) - (window_size - 1)

5 var barrier_wg sync.WaitGroup

6 n := num_items / num_goroutines

7 go_max := make ([][] float64, num_goroutines)

8 for i := 0; i < num_goroutines; i++ {

9 go_max[i] = make ([] float64, 0, num_goroutines)

10 }

11 for i := 0; i < num_goroutines; i++ {

12 barrier_wg.Add (1)

13 go func(go_id int) {

14 defer barrier_wg.Done()

15

16 // computing boundaries

17 var start , stop int
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18 start = go_id*int(n) + (window_size - 1) //

starting index

19 // ending index

20 if go_id != (num_goroutines - 1) {

21 stop = start + n // Ending index

22 } else {

23 stop = num_items + (window_size - 1) //

Ending index

24 }

25

26 loc_max := make ([] float64, stop -start)

27 idx := 0

28 for i := start; i < stop; i++ {

29 loc_max[idx] = max_in_slice(input[i-( window

_size -1) : i+1])

30 idx++

31 }

32 go_max[go_id] = append(go_max[go_id], loc_max

...)

33

34 }(i)

35 }

36 barrier_wg.Wait()

37

38 for i := 0; i < num_goroutines; i++ {

39 output = append(output , go_max[i]...)

40 }

41

42 } else { // empty input

43 fmt.Println (" rolling_max is panicking !")

44 panic(fmt.Sprintf ("%v", input))

45 }

46 return output

47 }

Listing A.13: Concurrent rolling max embracing false sharing

1 func rolling_max_concurrent 2( input [] float64, window_

size , num_goroutines int) [] float64 {

2 var output = make ([] float64, len(input))

3 if len(input) > 0 {

4 num_items := len(input) - (window_size - 1)

5 var barrier_wg sync.WaitGroup

6 n := num_items / num_goroutines

7
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8 for i := 0; i < num_goroutines; i++ {

9 barrier_wg.Add (1)

10 go func(go_id int) {

11 defer barrier_wg.Done()

12

13 // computing boundaries

14 var start , stop int

15 start = go_id*int(n) + (window_size - 1) //

starting index

16 // ending index

17 if go_id != (num_goroutines - 1) {

18 stop = start + n // Ending index

19 } else {

20 stop = num_items + (window_size - 1) //

Ending index

21 }

22

23 for i := start; i < stop; i++ {

24 output[i] = max_in_slice(input[i-( window_

size -1) : i+1])

25 }

26 }(i)

27 }

28 barrier_wg.Wait()

29

30 } else { // empty input

31 fmt.Println (" rolling_max is panicking !")

32 panic(fmt.Sprintf ("%v", input))

33 }

34 return output

35 }

Listing A.14: Concurrent rolling max embracing false sharing

1 func compute_window_max(input , output [] float64,

start , end int) {

2 output[end -1] = max_in_slice(input[start:end])

3 }

4

5 func rolling_max_concurrent 3( input [] float64, window_

size , num_goroutines int) []float 64 {

6 var output = make ([] float64, len(input))

7 if len(input) > 0 {

8 length := len(input)

9 num_items := length - (window_size - 1)
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10 pending := make(chan *Work)

11 done := make(chan *Work)

12

13 // laod pending with work

14 go func() {

15 for i:=( window_size - 1); i<length; i++ {

16 pending <- NewWork(compute_window_max

, input , output , i-( window_size -1)

, i+1)

17 }

18 }()

19

20 // start workers

21 for i:=0; i<num_goroutines; i++ {

22 go func() {

23 Worker(pending , done)

24 }()

25 }

26

27 // wait till all work is done

28 for i:=( window_size - 1); i<num_items; i++ {

29 <- done

30 }

31

32 } else { // empty input

33 fmt.Println (" rolling_max is panicking !")

34 panic(fmt.Sprintf ("%v", input))

35 }

36 return output

37 }

Listing A.15: Tests for checking the correctness of rolling_max

1 //############### TESTS ###############

2 func TestSlice_in_max_serial 2(t *testing.T) {

3 test_serial_serial_slice(t, returns , fw , sw ,

rolling_max_serial , rolling_max_serial 2)

4 }

5 func TestSlice_in_max_concurrent 1(t *testing.T) {

6 test_serial_concurrent_slice(t, returns , fw , sw ,

32, rolling_max_serial , rolling_max_concurrent

)

7 }

8 func TestSlice_in_max_concurrent 2(t *testing.T) {
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9 test_serial_concurrent_slice(t, returns , fw , sw ,

32, rolling_max_serial , rolling_max_concurrent

2)

10 }

11 func TestSlice_in_max_concurrent 3(t *testing.T) {

12 test_serial_concurrent_slice(t, returns , fw , sw ,

32, rolling_max_serial , rolling_max_concurrent

3)

13 }

14 //############### TESTS end ###############
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