PDEs

Boundary Conditions

Dirchlet: Fix values of the sol on 02
Neumann: Fix V of the sol on 92
Cauchy: D + N on whole 02

Mixed: D + N on disjoint parts of 02

Poisson equation
{—Au(x) = f(x) on{
u(x) = g(x)

on 0f) (L)

Elliptic, linear, not time dependent, infinite
speed of information
Heat equation
Up = Ugy on [0,1] x (0,T)
u(0,t) = u(l,t) =0 (2)
u(z,0) = ug(x)
Parabolic, linear, time dependent, infinite
speed of information
Scalar conservation laws
Ut + f(u)fr =0 on [07 1] X (OaT)
BC (3)

u(z,0) = ug(x)

Hyperbolic, time dependent, finite speed of
information

Scalar conservation laws
Ut + f(u)a: =0

.

Transport equation |

ug +a(z, t)uy =0 ‘
\

Linear t.e. |

us +auy, =0 ‘

Traffic model

Uy + (vmax(l — u)u)x =0

Burgers’ equation I = N x N Identity
up +uuy, =0 (&

Uf+(u72) =0 B —1

)

Finite difference methods

1. Discretize the domain
1D: Az > 0 — N + 2 Points with N = 2~ — 1

2. Discretize functions and derivatives
u; = u(j - Ax)

3. Scheme from discretized PDE
= LSE: AU =F

Example I

1D Poisson on (0, 1)
w/ homogeneous Dirichlet BC

2. _ |:uj+1f2ujv+uj-,1?| _ .
- At 1<j<N 5
Up = UN+1 = 0
3. = U = [u1, ug, ..., un]
F= [flan?"'?fN] : AZ‘Q
2 -1 ... 0
A— -1
SO
0 -1 2
NXN
Example II

2D Poisson on [0,1]2

w/ homogeneous Dirichlet BC

2. —

Wi, 2 U1,y Wi =2 U1 f .
Azx? Ay? - Juy

U0,j = UN+1,j = Ui,0 = Ui, M+1 = 0

3. row-wise ordering, Ax = Ay

—U = [ul,l,ul,g, ...7u271,...7u]\[7]\]]
= [,fl,l’ fl,g, ey f2717 ""'fN’N] . A$2
B -1 ... 0
A= -1 with
: . =T
0 ... —I Bl .
[4 -1 ... 0]
1
0 -1 oA,

Example III

1D heat eq. on (0,1) x (0,T)
/ homogeneous Dirichlet BC

2. central in space, forward in time
n+l__n n n n
B A B E St B o R
At Ax?
uy =uny; =0 Vn
0 _ .
uj = uo(x;)

3. Solve by explicit time stepping

Stability

h h
e = max |(u; — uj
H Hoo 1§j§XN‘( 5 =)
N N
Examine — Y u;DTD u; = 3 u,f;
j=1 j=1
Summation by parts & N = +

N
_Zl(D*uj)2 < wlull il

Jj=

i

Rewrite u; = > (u; h-> 1-D uj
j=1 Jj=1

lui| < h (2 1) ( (Duj)2>2 .

1
< hNE (Ll ) = ) )17 2,
= Jlull o <I1£l.

Consistency

—uj_1) =

[NE

Truncation error T}{ =-D'D u; — f;
fl/

é hm||7'h\|

h—0

Convergence

e’-l = uj ul

D+D D+D_Uj

D*D*uj =—f;

D'D W} =—f - R’

- DD ¢!

— DD u”

=R/
N N Poisson equation
eo =eny1 =0
< Rl <

00 stability

h

:>He Ch?

truncation error

Lax equivalence theorem

For a well-posed and linear IVP:
A FD method is consistent and convergent
< the method is stable

Lem. 2.4.1 (truncation error):

A 1| pas
e < t]| e

A o~ A A o~

Lem. 2.4.2: If f € C%(0,1) then:
[EdIp
<o

HTAI

- Az,



Finite element method

1D Poisson equation
—u(2) = f(x)
u(0) =u(1l) =0

on [0,1]

e multiply by test function
e integrate over )
e integration by parts / Gauss-Green

=
Minimizing Dirichlzet energy
1 1
J(u) = %fo |u'(a:)’ dx — fo u(z) f(z) dx
for u € Hg ((0,1))
feL?((0,1))
Look at critical points J'(u) =0

J' (u) m 7““4'”;)_”“) = fol w'v' de — fol fvdzx

=1l
T—0

= Variational Formulation
Find v € V|, st.:

j;)l ' (z)v'(z) de = jol f(x)v(z)dz, Vo € H} ([O7 1])

Abstract FEM

Variational formulation:
Find v € V (V is Hilbert space) st:

a(u,v) =1l(v) YveVv

FEM:

Choose Vj, C V finite dimensional subspace =

Find up € Vy, st:

a(un,v) =1l(v) YveVy
Let {¢;}}_, be a basis of V}. Then:

a(un, ¢;) =Up;) V1<j< N
Write up = vazl u; i ().
Then AU =F
with: U = {u; }7L,
F={fi}il Ji=Uepi)
A ={Aijh<ij<n Ay = alpi, ¢))

If a is symmetric, then (16) is equivalent to:

Find u € V st:

J(u) = min {J(v)}
with J(v) = 1a(v,v) — I(v).
If a is symmetric, A is spd.
if a is not symmetric, A is still invertible.

(4)

(5)

Lax-Milgram theorem
It

e a is continuous: |a(v,w)| < v||v|y[lwlly
e ais coercive:  a(v,v) > alv|3

e L is continuous: [I(v)| < Allv|ly

then the variational formulation (16) has a unique
solution and is stable: |[u]|y, < 2.

Boundary conditions

Boundary conditions determine the choice of V:
Boundary Condition

T

Dirichlet Neumann
homo. inhomo. u,v € HY(Q)
BC BC
w,v € HH(Q) weHY Q)
st. BC
v € H§(Q)

Solving Poisson equation with inhomogeneous
Dirichlet BC u(x) = g(z) on 8Q — u € HY(Q):
Define u = up + ¢

. Jg(z) onoQ
~]o else
= up € H(l)(Q)
—Aug = f+Ag inQ
ug =0 ondf?

In LSE: order nodes st boundary terms come last
Ao Aps| |Ug Fo
As Aso| |Go

Fos
AgpUg=Fg— A

00Go

setDirichletBoundary(u, interiorVertexIndices,
— vertices, triangles, bc_ fct);
F—=Axu

Sparsematrix Alnterior;
igl::slice(A, interiorDofs, interiorDofs, Ainterior);

Vector Flnterior;
igl::slice(F, interiorDofs, Flnterior);

Eigen::Simplicial LDLT <SparseMatrix> solver;
solver.compute(Alnterior);

Vector Ulnterior = solver.solve(FInterior);
igl::slice _into(Ulnterior, interiorDofs, u);

Neumann boundary conditions are considered
when finding the variational formulation.

Error

en(z) = u(z) — un(x)
Exact solution:

a(u,v) =1l(v) YveVv
coa(u,v) =1l(v) Yv eV,
FEM soluton:

a(up,v) =1l(v) Yo eV,

Subtract — Galerkin orthogonality:
a(en,v) =0 Yv € Vy (8)

Choose w = up, — v for a v € V,, write

||eh||i1(1) < La(en,en) + alen, w) and use Galerkin
orthonormality to show Cea’s inequality:

lenlly < Zllu—vlly Vo eV

. FEM error is bounded by interpolation error.

p-order basis functions
Ihu(d) = u(d) Vd (for p=2: d=Vertex,Midpoint)
lenllgy < CR™REPFLEI= |yl
lenllpz < CR™PHLE jy| g,
1D:< with p: order of FEM basis

k: "nicenessof solution
Ex: Piecewise linear basis (p = 1)
lenlley < Chllullg2
lenllpe < CR?[lullge
lenllsgy < C(emins emax)h||D?u
2D: ¢ If Q is convex:

2

o], < Clfle

L2




Implementation

Implement AU = F
Integrate element-wise

Locality of basis: Ay = alpi,p;) =
D m Ok (Pi05)
fi=1Upi) =22, e (i)

Summands only nonzero if ¢, j on the same trian-
gle km — compute local element stiffness matrix /
load vector and assemble global stiffness matrix /
load vector.

Integrate on reference triangle

Use affine linear map from

reference triangle k = {(0,0), (1,0), (0, 1)}

to real triangle k = {]\7,4, ]\73, ]\70}:

Ji = [1\7‘3 —Na Neo —NA]
Oy (%) = Na + Ik

B, (x) = 3. (x — N

©¥ : shape function at vertex a of triangle k

¢ shape function at vertex « of refrence triangle

dxd

oo = Pa(®y (%)) Pa(X) = 4 (P(X))
Vi =31 Ve(x) Véa (%) = JTVeh (%)
= Aij =3, Gk, (i, ¢5)
fi= Zm lk'm.(()éi)
Example:
Au=f inQ
u=0 on 9N
Aij = o Vei(z) - Ve;(z)de
=2 [ Voi(x) - V() dz
= Zk Jil J*TV@-(&» (3 TV (%)) |det Iy, | dX
= Jo I ) dx
= Zk fk dx
*Zkfk wi(%)|det x| dx

Pseudocodes

Compute element stiffness matrix A*
For a =0,1,2
For #=0,1,2
Al 5 = integrate(J;, " Va -

3. TV ¢s|det Ii))

Assemble global stiffness matrix A
For each triangle k

A* = compute local stiffness matrix
I = (i, 7, k) indices of vertices of k
For « =0,1,2

For 8 =0,1,2

A1), 1(8))+ = A% ,

Compute element load vector FF
For a =0,1,2
F! = integrate(pa f (P

(R))[det Jk|)

Assemble global load vector F

For each triangle k

F* = compute element stiffness matrix
I = (i,7,k) indices of vertices of k

For a=0,1,2

F(I(a)+ = FF

Chapter 4: FEM

4.1 1D Poisson
4.1.0 The energy method
Lem. Poincaré:

/01 ()| dz < /01 ! (2)[? do

Furthermore, the estimate (22) and the Poincaré
inequality (9) can be written as: ||u[|re < ||ul|m;
and |[ul| 2 < |[ull,.

We can further summarize the estimates (22)-(24)
as:

9)

lullrz < [Ifllz2

Poincaré
< [/l

< HUHH(’)
<1z

Uniqueness: An immediate consequence of the
energy estimates (10) is the following Lemma Lem.
Uniqueness: The solutions of the Poisson equati-
on (2) are unique.

[lullze (10)

[[ullze

4.1.1 Variational formulation

4.12 Finite element formulation

Ex. S4A1a: The evolution of the temperature dis-
tribution v = wu(x,t) in a homogeneous "2D bo-
dy"(occupying the space Q C R?) with convective
cooling is modeled by the linear second-order para-
bolic initial-boundary value problem (IBVP) with
flux (spatial) boundary conditions:

ou

E_Auzo inQX[O,T],
—Vu-n=yu on 9Q x [0,T7, (11)
u(x,0) = up(x) in €,

with v > 0. For the semi-discretization of (11) we
employ linear finite elements on a triangular mesh
M of Q with polygonal boundary approximation.
Derive the spatial variational formulation of the

form m(u,v) + a(u,v) = l(v) for (11), with suita-
ble bilinear forms a amd m, and a linear form I.
Specify the function spaces for u(t,-) and the test
function v.

Solution. find u € H'(Q), s.t Vv € H'(Q)

uvdz—i—/ Vu~Vvdm+/ yuvdS =_0 .
/Q Q o0 ~
——— =l(v)

=m(u,v) =a(u,v)

With V = Hg([0,1]), the variational formulation
of the one-dimensional Poisson equation is: Find
u € V such that for all v € V' it holds that:

/0 L (@) (@) de = /O (@) f () de.

Using the notation (g,h) := fol
may write (12) concisely as

(u/7 'U/) = (f,v)

w : [0,1] = Rs.t.w is continuous,

w(0) = w(l) =0, and w|[j—1)n,jn]

is linear Vj € {1,...,N +1}

Find u, € V" such that for all v € V" it holds
that (up/,v") = (f,v) (FEM).

(12)

g(z)h(z)dz, we

YoveV.

Vh =

4.1.3 Concrete realisation of FEM
Definition hat/tent functions:

== zelrion),
pj(r) = =z € [z, m541),
0 otherwise.

Then ¢;(x;) = d;; and

| R =ElG=Dhoh),
pi(x) =49 —5 =€ [h G+ 1A
0 otherwise.

==

Given a function w € V", it clearly holds that

N
= wjp;(x),
j=1

with w; = w(x;).

N
/ /
(Aw,w) = Y~ widijw; = > wi], 9))w;
i,j=1 i,j=1

N
_ / «N /
= E WiPi E wjPj

i=1 j=

_, _y ifwF0
=(w,a) >

4.1.4 Computing stiffness matrix and vectorload

Foralli,j =1,...,N: Aj; = (¢}, ¢}) =

az [l lde = i—j]=0.

Therefore, the matrix A is given by

2 —1 0 0
12 1
A= % 0 0
1 2 -1
0 ... 0 -1 2

4.1.5 Convergence Analysis

Definition Error Function: e, := v — us.
Galerkin orthog.: (v',v") = (f,v) and

(uhv ) (fa ) (ehv )_0

Define; w = up — v € V", Then

1
2 2
lenl s oy = / eh (@) dz = (¢, €h)

= (€h, €h) + (eh,
h

e, (eh +w')) =

w') (because of Gal. orth.)
(€h, (u—v)")

- / eh(@) (' () — v/(2)) da

1/2 1/2
cs 1 1
< / e, |? dz . / ' — ' de
0 0

= ||€hHH%([0,1]) lu — ’UHH%([O,l])'
Hence, for all v € V" it holds that

HehHHg([o,l]) <|lu— ”||Hé([0,1])~

Cea’s Lemma: In other words, for all v € V" it
holds that

llw = wunll o,y < = vl o.1))- (13)
Define such a v =: Ipu. Then
llw = Inull gi (0,1 < Ch, (14)

where C is a constant that depends on
maxo<y<1 |u” (y)|. (13) and (14) imply that

HehHHé([O,l]) <|lu— UhHHg([OJ]) < Ch.

Thus, the FEM converges to the exact solution as
h — 0 and the rate of convergence in the Hg ([0, 1])



norm is at least 1. In order to obtain a correspon-
ding error erstimate for the ([0, 1]) norm, we can
use the Poincaré inequality (9) to obtain

u — unl|p2(017) < Ch. CRUDE!
([0,1])

Aubin-Nitze trick:
Duel problem: Find ¢ € H} such that

= en(x)
p(1) =0

1
llenll72 :/0 en(z)en(r) dz

/
(Inp) )
N~
=0 by Gal.Orth

= (en: (¢" = (Ing))")
C.S.

< llenllmglle = Inellmg

Int.err.
< Crh Cohll” || < CR2|l@" |2

as
< Ch7len||r2

= (e/hy QOI) - (6;17

= |len||r2 < Ch? which is a better error esti-
mate.

4.2.4. Numerical Experiments in 2D
Rem. 4.2.4:

2D: h = O(N~'/?)

ID: h=O(N™1)

& EOCHé (h) =2EOC(N)

Rem.: u € HY = u e L?

Von Neumann BC:

Find u € H'(Q) s.t.:

Jo(Vu, Vo) dz + [uvdz = [, fodz + [ gvdS

Vo € H(Q)
i.b.p.
E=RES

Jo( A+uff)vdx:fr(f%+g)vd5

1. H3(Q) c HY(Q), choose v € H(Q) :

= [o(wA+u— fludz =0, Yo € H5(Q)
:>—A+u:f, Vo € Q.
2. fr St 4+ g)vdS =0, Yo € HY(Q)

= du — g on I' (boundary)

Triangulation

Split 2 in non-overlapping triangles with no

hanging nodes.
h = Ircré%x{diam(k)} ; diam(k) for ex. longest edge
h

of k
Shape-regular triangulation

Ty, is shape regular if 3 constants ¢min, Cmaz, S-t.
Cminh < diam(k) < ¢mazh Vk € T,
& Triangles in T}, are of similar shape and size.

Representing triangulations

List of vertices:

vi v VR,

Z = v} vy %, | € RAimx Ny
vi vi . VR,

List o:f triangles: :
i1 o INp

T=\|hn jo g | € NPT
k‘l kz k‘NT

Coordinates of the i-th vertex of the j-th triangle:
Z(-,T(,4))-



Heat equation

Ut = Ugpx n (0, 1) X (O,T)

u(0,t) =u(1,t) =0
u(z,0) = uo(z)

(16)

Fourier’s method

Separation of variables:

— u(z, t) =Y o arsin(knz)e
Find ay for given wug by:

ap = 2 fol uo(x) sin(krz) dz
Algorithm for Fourier’s method (Spectral method):
1. Given up, obtain ax by quadrature

2. Truncate the initial expansion

K
> aksin(krz)

k=—K

3. Evaluate approximate solution

K 2
S ag sin(knz)e~FT"

k=—K

—(km)2t

ufe (x) =
uk (z,t) =

Numerical schemes

)\ _ At
2
n
L2—A«’EZ | — u(a;, t)]
Truncation error: "plug exact solution into nume-
rical scheme", has the same scaling as Efz.

Rem. spatial centml and temporal forward diff:
™ 2u +u

(e (5, £7) — “* L=l < CAx?
u7}+1 u”

Jue (), ") — | < CA

Explicit FD

Central in space, forward in time

n+1 n n n n
Ui Tuy o g T2y tuyog
At - Ax?2
2<j<N-—-1
u?+17u1 _ uy—2uf
At - Ax?
nfl_ n

n n
_ upn_1—2upn
At IR Ax?

Update Form

U?H =Aujq + (1 —20)uf + duj_,
ul ™ = Muf + (1= 2\)u?

ui™t = Moy + (1= 2\)uly

stable iff A < %

Truncation error:

n _ u;’ —uj u;’ 1—2u;L+u;L+1
i = At Ax?
E® < C(At+ Az?) < C(Az?)
Implicit FD

Central in space at t"*!, backward in time

n+l_ n+l o ntl, n+tl
I B S B B

At - Ax2

VD A N 1

T —ul  up T 2wl
At - 2

n+1 wl u;(]t1172ux7+1
t = Ax?2

) &
uj = uo(x;)
Update form

ul = =Ml 4 (14 20)ul = ]
uf = =i+ (14 20)u] 1
uly = =g 4 (1 + 20 uly e
= LSE: AU = U™
142X =X ... 0

a=|

: LT 2

0 L 2 I

unconditionally stable

B2 < C(At + Az?)

Crank-Nicholson scheme

Linear combination of explicit and implicit

At
2Az 2<j<N—1
[ L — 2u} + utt — 20t
At T 2Az2\"2 1
up vk (uRr_q — 2uf +u"+1 Zu"“)
At — 2Az2\UN-1 N N
Update form:
A, n+1 n+1 A, n+1l __
[2 uity + (L4 20u™ = guity =
A A, n
suits — (1= A)uj +7u-_1]
1 )Y J 2<]<N 1
A 1 1
ud ™ 4 (1 4+ Nuft 2uf + (1 — Nu?

—iuﬁi (1 A = ?%uNfl + (1= Nuf

= LSE AU™ = BU
L+ -3 ... 0
_2
A=| 2
: _2
N 2
L0 =3 T2y
B A
1-x 3 0
A
B=| 2
: LT 2
: ; 2
N 2N

CN is uncondltlonally stable, but can generate

small spurious extrema when A > 1.

E2 < C(At? + Az?)

FEM

Find up, € Vi C H(l)(Q)

At((upth) s ve) o+ (upth0) o = (ul,v) . Yo €
h

Energy principle

—2f9 (z,t)dx
En(): AQT Zq( .7)

E(t) < E(0) (17)
Show (fi—f < 0 by PI+BC.
Consequences

Stability

Let u, v solve the heat equation. Then w = u — v
solves it as well, so by the energy principle:

f01|u — ol dz < f01|uo —wol|* dz

Pertubations get smaller

Uniqueness

If u, % both solve the heat equation with the same
initial data, then by stability:

u(z,t) = a(z,t) Y(x,t)
wi=u—(u) = w=uo(z) —uo(z) =0 = u=1i
(initial condition & energy fct)

Consistency of Fourier’s method

As K — 00, u% — uo and by stability, ux — u.
Stability of numerical schemes

Stable in the sense that they satisfy the energy

principle:
Explicit  iff A < 3
Implicit unconditional
CN unconditional

This can be shown by manipulating the numerical
scheme in it’s operator representation.

Maximum principle

ax{0,uo(x)} V(z,t)

A
-

Show by contradiction, uzz(zo,to) % 0 and the
heat equation that the strict maximum of u(x,t)
can’t lie in the interior or at ¢ = 7. Remove the
possibility for a non-strict maximum by arguing
similarly about u® = u(z,t) — et. And in the end
let ¢ — 0.

Consequences Stability of numerical schemes
Stable in the sense that they satisfy the maximum

principle:
Explicit  iff A < £
Implicit  unconditional
CN iff A<1

This can be shown by manipulating the scheme in
it’s update form.

Computational work

W ~ mesh points x time steps, i.e. ﬁ . ﬁ = X3 (expl.

case)

Explicit (CFL: Az? ~ At < 1):
E% ~ At + Az? ~ Az?

Wea ~ mumi ~ ag5  (mpa73)
= Az~ W2

S EA ~W™3

Implicit (At ~ Az < 1):

E2 ~ At + Az? ~ Az

Wim ~ gom ~ mez = Do v W
S EA ~ W2
Crank-Nicholson (At ~ Az < 1):

E&n ~ At + Az? ~ Az?

1 = Az ~W/?

1
Wer ~ xoaz ™~ 2.2

— ES ~ Wt
—s for the same amount of work, ES, > ES >
E&y.



Scalar conservation laws

(101)

{ut + f(u)e =0
u(z,0) = uo(x)

Method of characteristics

For a scalar conservation law written as
ur + a(u, z,t)uz =0
u(z,0) = uo(z)
choose the ansatz
&(t) = a(u, z(t),t)
z(0) = xo
to find curves on which u(z,t) is constant.
Lu(z(t),t) = u + U = 0
= u(z(t1), t1) = u(z(tz),t2) V(t1,t2)
The solution is then
u(z(t),t) = u(z(0),0) = uo(zo)

Transport equation
Scalar conservation law with f(u). = a(z,t)us.

Solution via characteristics

Linear transport equation: a € R

:E(t) = a (equation of characteristics) [solve this ODE]
— x(t) = at + xo,To = :L‘(O) lonly for const. a, solve
for ¢ to do the t-x plane plot!]

— u(z,t) = uo(xo) = uo(x — at)

Energy principle

For lim, s+ o0 u(x,t) = 0 V¢, |laz|l ., < o0

G <lasllo B & B(t) < B(0)e o=t

Proof: multplying (101) by u, chain rule, product rule, in-
tegrate over space, decay to zero at infinity, regularity of
a, Gronwall’s inequality

— FD central in space, forward in time is uncon-
ditionally unstable.

Scheme

a(z,t) dictates direction and speed of propagation
of information.

Characteristics — u(z,t) = uo(z — at) for a € R
[a>0 —] | [a<0 +—]

Domain of dependence C numerical stencil

u(z,t + At) = uo(x — a(t + At)) =

uo((z — aAt) — at) = u(x — aAt,t) if a € R

— Simple centered FD scheme

1 1
wi g + alufy—ui 1) _
At 2Ax -

forj=1,...,.N—1
— Upwind scheme

at = max(a,0), a~ = min(a,0)

la|=at —a",a=a" +a”

w T w—u W —u
J J + 25 j—1 — 41T
At ta Ax ta Ax =0
<
wt T a(ul, —ul )
J J Jt1 i—1) _ lal no_ n n
A T oAy = 24z (“f+1 2uf +uiy)
Lem. 2.8: If|a| £ < 1 then E""' < E™.
FEzxample exam: We consider the equation
c>0

Ut + Ugy = CU,

u(ag 0) = UU(‘T)
Modify the upwind scheme to include the RHS cu:
u?'H =uf — RL(u} —uj_1) + cAtu}

Weak solutions

u € L™ (R X R4) is a weak solution of (?7?) if
fR+ fR(u@t + f(u)@l) dz dt+

Jo uo(2)¢p(z,0)dz =0 Vo € C} (R X Ry)

Every classical (strong) solution is a weak solution.
If a function is a weak solution and smooth (C*),
it is a classical solution.

Burgers’ equation

Scalar conservation law with f(u) = “72

2
ut + (%)z = 0 (conservative form)

Ut + Uty = 0 (non-conservative form)

Riemann problem

ur + f(u)e =0
_ uf ifr<0
o= u® ifr>0
Characteristics:
&(t) = u(z(t),0)
{1:(0) = o
ifzg <0: x(t) = zo +ult
if 2o >0: x(t) = zo + u't
u? > u® — characteristics intersect — shock
u? < u® — domains without characteristics —
rarefaction

Shockwave: u” > u”

Rankine-Huginot condition

If u is a weak solution and u is smooth except for a
jump discontinuity ¥ = {:c tx = U(t)}7 then away
from X, u is a classical solution.

At X,

FR(0) — fuk(6) = o™ (@) - ub (1))

s f@Re)—fl®)
@0 = TR —ul@

with v, v being the left, right limits at the jump.

— Use to find expression for o(t).

L - .
u if v <ot
u(z,t) =
(%) {uR if x> ot

Rarefaction wave: uX < u’

Solutions obtained by RH don’t satisfy entropy
conditions in this case.

Self-similar solution

If f(u) is convex, u(z,t) = f'~'(%) in points where
there are no characteristics.

u® if 2 < f/(u")t
u(z,t) = f7HE) i fuP)t <z < f(u)
ult if 2 > f(u™)t

(Just linearly connect the two constant regimes)

Combined shock/rarefaction

In the case of multiple discontinuities, a rarefaction
wave can catch up to a shock (or vice versa).
Treat that point in time as IC for a new Riemann
problem.
Take care when using RH: Insert analytical expres-
sion for v /ul, set x = o (t) and solve ODE.
S5A1a):
t=12t+1let=2

a(t)

_ fur(o().)~fup(o(®).8)) _ 1
o'(t) = B ey =i

o'(t) = Lo(t)
= 2t solve) = =2t
o(2) = 2 (solve) = 7= /2

z < f(u)t =0
flut=0<z<o=+/st
x>0 =+2t; fort> 2.

0,
u(z,t) = %
0,

Entropy condition

For some IC (u® > u® — rarefaction), there is a
region without characteristics. In this case, we can
find infinitely many weak solutions for the same
IC. There, the entropy condition imposes a unique
solution.

Information cannot be created, only lost’ —
characteristics can only flow into a shock <> cha-
racteristics can’t intersect backwards for ¢ > 0

Lax entropy condition

If f(u) is strictly convex, the entropy condition
states
uB(t) <ul(t) & f(Wh) < f(ub)

General entropy condition

By considering a viscous problem
ui + f(u')e = Uz
u®(z,0) = uo(x)
0<ex1

and functions

Entropy func S : R — R,

any strictly convex function

Entropy flux Q: Q(u) = [ f'(7)S(r)dr

we find S(u®): + Q(u®)s < £S(u¥)ga.

If we let € — 0, we get the entropy condition for

general initial data for scalar conservation laws:

S(u)e +Q(u)a <0

this is calles entropy inequality, where S is entropy

fct and @ is entropy flux.

Def. 3.7: An entropy solution u(x,t) for a general

conservation law (101)

e uc L¥(RXRy)
e u is a weak solution
o u satisfies [ fR+ (S(u)pr + Q(u)ps) dzdt > 0

Vo e Ce (R X Ry), 9> 0.

€ .
EUypyp = viscous term

If f(u) is strictly convex, entropy solutions satisfy
the Lax entropy condition.
Entropy solutions exist and are unique.

Bounds on entropy solutions
Integrate over R:

— 4 [ S(u)dz <0

— Choose S = |"Tlp

= [luC )| <lluollyy

— Maximum principle for p — oo

Oscillations of entropy solutions

Multiply both sides of the viscous problem with
(—sign(uz)e) and integrate over space —

% fR|um\ dz <0= fR}ux(z,t” dr < fR’uﬁ(xﬂ dz

Fourier law: F(u) = —kVu.

Rem.: How to show that a result is a weak soluti-
on?

Don’t have to look at the integral formulation.

e check smoothness
e check RH at shock.



Finite volume methods

Dealing with discontinuous functions — work with
averages instead of point values.
Discretize domain into cells

Points Ap = H5=SLs " = nAt
(N+2) x; =L+ (J +1/2)Ax

Tj_1p =xj — AT =xr + jAx
Cell C; = [1371/2,x3+1/2)

Cell avgs U =~ frf“/z u(z,t™)dx

1/2
- Tl
Fluxes Foiap = A l: " (i, t))dt
RO
2 R
anjfl/2 = ﬁ t{ fu™(zj_1s,t))dt

The integral form of the conservation law is then
At =
(F Titi/2 sz—l/z)

Un+1 _ Un
I Az

(18)

Information flow:

Information propagates from left to right:

k
uj—uy_y

— Y%
8I'LL - Ax

Godunov method

There is a Riemann problem at each cell interface:

ur + f(u)s =0
wa,y =4 HE<ae o (19)
Uj+1 if © > mj+1/2

Solutions to Riemann problems are self-similar, so
the solution can be written as:

(. 1) = 1; (s

At the cell interface, w_fji:;m =0, 50 U (Tj41/2,1)
is constant and so is the flux f(u(zjt1p,t)) =
f(u;(0)).

f(af(0)) = f(a}(0)) holds in the case of rare-
faction (@; is continuous) and shock (RH with
stationary shock), so the Rlemann flux F7.),
is well defined, F},, = j+1/2 and (23) is the
standard form of a finite volume scheme for con-
servation laws.

Maximum wave speed gives CFL-condition:

max; | f'(U}')] 2% < &

Godunov flux

Explicitly calculate the fluxes

jn+1/2 = F(U;-l, jn-t—l) =
min f(e) if Uy <
Jeedun (©) 1
ma: Q) ifU! >
oet X up f(©) i

If f(u) has no ™aXima exactly one Minimum a4t ;) iy
. minima maximum
an interval (a,b) "&"f(u) is

convex .
S concave'
(w is a minimum/maximum)

w}), f (i

The Godunov flux gives good results, but it is
expensive to compute for general fluxes and relies
on an explicit formula for solutions of the Riemann
problem (not available for more complex problems
than scalar conservation laws).

no o _max], maX{
J+1/2 7 min min

Ez. The flux in the case of the Burgers has a unique

minimum at v = 0 (convex).

Roe’s scheme

Linearize the Riemann problem
Replace f(u)z by Aj41Us in in (24).
For example

N U™, —U™

Aj+1/2 — f/ ( J+1/22 ;71/2>

or Roe’s choice:
FUR)—F(UT)

N n n U
Ajpap =9 T s ?
£ i Ur, = Ur

The explicit solution of the linearized Riemann
problem yields:
F_n,llaoe _ f(an) %f {lj+1/2 >0

AN fUf1) i Ajpap <O
Roe’s scheme is fast and yields correct results for
shocks, but gives solutions for rarefaction which
don’t satisfy the entropy condition. This is becau-
se the linearized Riemann problem is solved by just
one wave (correct for shock, should be two for ra-
refaction)
Rem.: e Roe computes weak sol’s not the entropy sol.
e Since the Roe flux approximates the local Riemann pro-
blems using only one wave, it should not resolve the ra-
refaction wave correctly and hence both the L' and L

errors should not converge.

Central schemes

The solution of the Riemann problem is appro-
ximated by a left- (speed 32“/2) and a right-
travelling (s’ ,,,) wave.

This gives a solution

Uy ifex< s§.+1/2t
u(z,t) = QUjp), if s§-+1/2t <z <yt
Uihh  ifa > siiapt

JESE w}) }\Nith RH, we can determine the intermediate flux

.
Ji41/ to be
. . . )
S;+1/2f(UJL"Sj+1/2f(UJL+1>+Sj+1/2'*§'+1/2(U§L+1

FEo(u;-l7 Ujtq)

= f(max(uj,w)) + f(min(uf;q,w)) — f(w)

EO scheme for conver fluxes:

FEO(u;-l7u;L+1) = f+(u;-1) + f(u}y1), where
[ (w) = f(max(u,w)), f~(u) = f(min(u,w)) posi-
tive (increasing) and negative (decreasing), i.e. EO scheme
is a flux splitting scheme.

Rem.: Godunov & EO best in this case.
Analysis

Conservative, consistent, monoto-

-fie schemes

J+1/2 Sji+1/2
fivip = i sf 1) # - J+1/2
it/ FUD T H)—s YN )
if SJ+1/2 =" J+1/2 = Sjt+1/2
The numerical flux is then
el
FUM if 8541/, 85412 20
n _ * . 1 r
it =\ Jive 80 0SS,
el
FUR) i 854000085100 <O
Choice of wavespeeds
—_ A l _
Lax- Sjt1/2 = Der Sjr1s = ~8j41)
Friedrichs Maximum speed without
waves interacting
Rusanov ]+1/2 = max{lf DINFRI >

7+1/2 = ]+1/2
Local max. speed for both waves
Both choices lead to approximations of the entro-
py solution, but are diffusive (LF more so than
Rusanov).

Lax-Friedrichs flux

n _ LxF n n

12 = F2 (uf, ufyg)
_ fDHwii)  As
= T B (ufyy — )

Rusanov flux

< FW™)+f(ulyq)
T = PR () uf ) = S
max(|f' (u} )\ [£ (D
- HE (u ufiy —uy)

Engquist-Osher scheme

Flug: F+1/2—F O(uf, ufy)
ulj+1
_ st 3 T o
- 2 2 f |f( )|
u”t
J

When the flux fuct has a single minimum at a point w and

no maxima, the EO flux can be explicitly computed as

Rewrite (23) in update form:
Ut = U} — 2L (F(U}., Uf) -
= H( Jj+1 Un n )

FUF, Uj-1))

e A scheme is conservative <
Ui =50
o A scheme is consistent <
F(a,a) = f(a) = H(a,a,a) =a
e A scheme is monotone <
H(a,b,c) is a non-decreasing function
in each of its arguments <
oH >0, aH >0, 21 >

e
Conservative Consistent Monotone
Godunov v v v
Roe v v X
LF v v v
Rusanov v v v
Central v v X

(under the CFL condition)

Thm. 4.5. (Conservative schemes)
H(0,...,0) = 0. Then U™ = H(u}
vative iff there exists a fct F*p = F(uj_,4q,.
s.t. U”Jrl = H(u?

Assume that

Y
J— sy ujy ) is conser-

== u?‘FP)
) can be written in the FV

1 J—mno J+p

— ot A

form u] =uf — &L (FJJFI/2 Fl' 1)

Lem. 4.8. (Monotone schemes) A FV  scheme
;‘+1 = uj — A.’I‘ (FJ'L+1/2 - Fj—1/2) with a two-point

flur F = F(a,b) is monotone if F is a Lipschitz conti-
nuous, differentiable fct in both arguments, non-decreasing
in its first argument and non-increasing in its second ar-
gument. The following holds too,

a— F(a,b)
b— F(a,b)
and the following CFL- type condition holds:
(b, )| + | 2 (a,b)| < B2

is non-decreasing for fixed b,

is non-increasing for fixed a,

6:1:1



Maximum principle

A monotone, consistent, conservative scheme sa-
tisfies the maximum principle

min {U7" U” Uj +1} < Ut <
max { -1 ]+1 } in particular, we have
miny (uf) < u;’ < maxy, (uf) vn, j.

Entropy inequalities & L? bounds

Def.: The Crandall-Majda numerical entropy flux:
Qi1 = Quy,ufyy) = F(uj vV Ekui VEk)— F(uj A
k, u;’_H ANEk),

where a V b = max(a,b), aAb= min(a,b).

Lem. 4.10 (Crandall-Majda) Let u? be an approxima-

te solution computed by a consistent and monotone three-

point scheme u”'*'1 = H(u? ur_q,uy »u;'l+1)' Then u satisfies
the discrete entropy inequality

|u;'+1 7k7| - ‘U;L 7k‘ + %(Q;q,l/z 7Q771/2) <0 Vn,j.

Total variation principle

POty op
= < |55l

Def. (Lipschitz fluz): =
7 J
Lem. 4.13 (TV bounds) Any consistent monotone

three-point FV scheme u;”rl

n ’n/
Uy — Az(F +1/2 j—1/2)
is TVD under the CFL condition |2 Bar £ (p, c)|+| 2 Bag  (a,b)] <

Az
At

Total variation: TV (u) = [p|us| dz=Y" |ufis —
Rewrite (23) in 1ncrement form:

1

UnJr - Un + C +1/2( Jj+1 = an) - ] 1/2(Un
TL

Jj— 1)

n _ A FWUMH-FUR LU

J+1/2 7 Az U"+ U7"

n _ ag UM )-FUR,, U

Ji+1/2 7T Az Ur U7

Harten’s Lemma

For a scheme in increment form, as long as
CJ+1/2,DJ+1/2 > 0 V]

CJ+1/2 JrZ)J_g.l/z <1Vj
then the scheme is TVD, i.e.
TV(U™) < TV (U™)

Schemes which are monotone, conservative and
consistent satisfy the conditions for Harten’s lem-
ma.

Convergence I‘esult

Approximate solutions with a pw constant function:
UA(z,t) = u]  for (2,1) € [2;_1/2,%541/2) X [t", "),
Thm. 4.14 (Lax— Wendmﬁ) Let u? be approximate so-

lutions of u; + f(u), = 0, computcd by a Conscrvativc and

consistent FV scheme u;"H =ul — (F]"+1/2 —F )
with a differentiable (or LlprhltZ) numerlcal ﬂux fct F,

/. Ti+1/2
AI Tj—1/2

that up € L°°(R) and that the approsimating fcts u®

where ug is given by uJ = uo(z) de. Assume

< C for so-

e are uniformly bounden, i.e. HuA”
Lo (RXR

me const. C' > 0;
e converge in Llloc(R X R) and almost ecerywhere to some
fct .

Then w is a weak solution of u; + f(u), = 0, with initial

data ug.

Boundary conditions

Solve PDE on domain [z, zr] with mesh 1/, = 1,
and zn11, = Tr (N + 1 points). Introduce ghost
cells:

Co = [IL — Ax,mL), CN+1 = [Z'R7JL'R + Am)
Dirichlet BC

U(’)n = g(wln tn)7 U]7\7(7+1 = g($R7 tn)

Periodic BC:

U(? = U]T\Lfv U]r\lf+1 = Uin

Non-reflecting Neumann BC: (Artificial BC)

Ug =U1", Unyqr =Ux

Miscellaneous

Finite differences

Forward diff.: u'(t") ~ [Djfu]" = ="
— R" = 30" (tn) + O(AP) )
Backward diff: o/ (t") ~ [Dy u]" = *"247—

— R" = -4t/ (t,) + O(AF)

1 no1
Central diff.: v/ (t") =~ [Dyu]™ = ’H—QA;;‘?
S R" = A21§1 ///( )+O(At4)
Central diff. for 2"¢ derivative:
u"(t") = [D; D/ u]" = [D/ Dy u]" =
[DtDtu]n _ un+1_2un+un71

At2
- R" = 25,8 (1,) + O(A?)

R = [Diu]” — /(1)
insert Taylor expansion of [Du]"

Crank-Nicolson (second-order convergence in ti-
me!) if given a PDE:

ou —F (u z,t du 93%u )

ot » da ) D
and the space discretisation (e.g. upwind):
ntl_ n
% =F} ( z,t, gu, 27) forward Euler)
n+l_ n
% =F7 (u z,t, gZ’ 27) backward Euler)
Then we the following holds:
n+l_n 2
Uy Ui n+1 ou O
At T {F (“xtvaa:’ax)

n 9 o]
+F7 (u Tyt 5 BT“)}
Err® (Az, At) = C1 AL + Co Az
Ezample with linear transport equation (upwind

for space)
T
v
At
n+1 n+1
1 ui —ui —1
5 a(z;)—* T a(xl) Az )
Trick
B+
ou - Dz “?+1/2+D ; Uit/

n
(Pigrje, 1) =
_o1 [ Wi uihage “i+1/2 ui \ _ upig—u}
) Ar + Ar - Ar

2 2

Hilbert, Sobolev and L-Spaces

chio.1) = {g| g€ C*((0,1) N C((0,1))

s.t. g(0) =0}
Hilbert:
A Hilbert space is a complete (every converging se-
quence of elements of V converges to an element of V)
vector space V with properties:

e Addition is commutative, associcative and has identity
and inverse elements

e Scalar multiplication is (associative),
has an identity element

distributive and

with an inner product:

(): VXV SR

v,w — (v, w)

which has the properties:

e Symmetry: (v,w) = (w,v)

e Bilinearity: (av + Bu, w) = a(v,w) + B(u, w)

e (V,w)=0v=0Vw=0and (v,w) > 0Vv,w € V
L]

Induces a norm: [|v|ly, = /(v,v)
Lebesgue: (Notion: L*(Q2) — CJ,(2))
L' (Q)-norm: [|x|, = 37, |z
L*(Q)={u:Q—>R: f9|u(x)|2dx < oo}
(u,v) 12 = [ u(z)v(z)dx

Uollo vl 2oy = (fy o) dfv)

L*(Q) ={u: Q> R: supxen|u } < oo}
||UHLoo = SUPzesz‘u T ’
[[u]l o =maxsea|u(z)
L?(Q) ={u: Q= R: [,|u(@)|" dz < oo}
1

”uHLp = (fn u? da:) » (no inner product for p # 2)
Sobolev: (Notion: Hg(Q) — Cp (Q))
H'((0,1)) ={u: Q> R:u € L?}
(u,v)1 = [ uv+u'v' dx
||UH§{1(Q) :”UH?ﬁ(Q) +||“’H§Jé(ﬂ)
Hy(Q) ={u:Q—>R:u €L?
(u, )y = Jou' (x)' (z) dz

1/2
el g ey = (Jo 1w/l de)
H*(Q) ={u: Q= R: v u",
(0 = Xh (w0
Other norms:

||f||A;c oo = SUD << | fil = sup <o | f(25)]
llal| ~1 := sup, g |a(y, t)| + sup, g |az(y, t)]|

u(0) = u(1) =0}

u® e L2}

HO — L2
L2, H* are Hilbert spaces
u € Hy = u € L? (Poincare)

Forms

Linear:

l1: V>R

v = L(v)

l(aw + Bw) = al(v) + Bl(w)

Bilinear:

a:VxV =R

v,w — av,w)

a(av + fu,w) = aa(v,w) + fa(u, w)

a(v, au + pw) = aa(v,w) + Ba(v,w)

Need not be symmetric!

a(-,-) symmetric < a(v,w) = a(w,v)Vo,w € V

Compact support / Smoothness

The support is:

supp(u) = {z € Q : u(z) # 0}

A set is compact if it is both closed( [a,b], not
(a,b)) and bounded.

® is continuously differentiable with compact sup-
port = ¢ € C}

Smoothness: f € C*, then f is smooth.

FEM basis functions

On the reference triangle k {a1,a2,a3} =
{(0,0), (1,0),(0,1)}, the shape functions are:

M = {zo =a,z1,...,TN,TN+1 = b}.

Ax)=1—-z—y
1D (p=1,8{(M)):{ Mi(x) ==
Xa(x) =y
Vio(x)=(—1,-1)7
Gradients: { VA (x) = (1,0)
Ve (x) = (0,1)T
$o(x) (QE\O(X) - 1)/:\0(X
P1(x) = (2A1(x) = DA (x
a0 ) @2(x) = (2h2(x) — D) A2(x
2= 2SO0 4 ) = 4ol ()
Pa(x) = 41 (x)r2(x)
$5(x) = 4Ao(x)A2(x)
Vgo(x) (4E\O(X) - 1)V§\O(x)
Véi(x) = (4h(x) = 1) Vi (x)
Vo (x) = (4h2 Ex) —A].)VAQ ()f) )
Vgs(x) = 4(VAo(x)A1(x) + Ao (x) VAi(x))
Va(x) = 4V (x)A2(x) + A1 (x) VA2(x))
V¢5(x) = 4(V)\0(X)A2(X) —+ AO(X)V}\Q (X))




where we have the points: p1 = a1,p2 = a2,p3 =
as,pa = 3(a1 + a2),ps = 3(az + az),ps = 3(a1 + as).
Lem. Dimension of spaces of polynomials

. d n
dim(Pp(RY)) = (“}7), VpeNo,deN, (}) = gty

Integration by parts
Jo fg'de =[fgly — [, fgda

General product rule:
div(fg) =
Divergence: div(F) =

=

f-grad(g) + g div(f)
V-F

Summation by parts

N

Z v;DTw; = vNp1wWNL1 — Vowo — Z w; DT v,
=1 §=0

Identzty

D; Diuj = x; (Dfu} — Dyuj)

Symmetmc case:
+ n+1
E; 1w Dz Dy

= - >N (Diw} )(DIW?H)
Discrete Chain rule
2
wiDfw} = iDf ((wf)z) - 4t (D:rw?)
2
wiD; wj = 1D/ ( ) - % (D;wt")
Taylor
+h)T dJ
fleth)= yo<j!)37§
o M (a n
Tf(w;a) =300 ) o8z — a)

Cauchy-Schwarz inequality
‘<u7w>‘2 < <uau> : <w7w>

1/2 1/2
> ugw; < (Zj\rzl U?) (Zj‘\jzl w?)

L urwir)ar < (fLuryar) (2w ar) "
a(u,v)] < (a(u,v))" (a(u,v))

Poincaré inequality

(ﬂu'(aﬂ)‘2 dx)%

inequality

lull 2 <llull gz <
1
(ﬂu(az)ﬁdx) :

Gronwall’s

IA

Let ((t) be continuous and w(t) differentiable on
[a,b] and assume

u'(t) < B(t)u(t) Vt € [a,b].

Then:

u(t) < u(a) exp ( JEB(r) dT) Vt € [a,b]

Gauss/Green formula

For Q € R? and j,F € C'(Q)%,v € C'(Q):

Gauss: [,V-Fdx = [,,F-ndS

Green: — [, V-judx = ffaﬂ‘ynvdSJ_er_]-Vvdx
Jod - grad(v )dX = — [qdiv(jvdx + [,,j-nvdS
~ [ div(u) div(_v_) dx — Green

11t J

Laplace operator

s _ o a2 82
cartesian: A = a? +o7toz

cylindrical: A = + Tlg 68;2 + az

7‘87‘

Quadrature

Composite trapezoidal quadrature

[} f)de ~ f(a)k + RN, flz:)+ f(b)2

Simple trapezoidal rule:

f fl@)dz = (b—a) [M]
Mldpomt rule:
f flz)dz =~ ( b_a)f(aTM)

Fundamental theorem of integral
calculus

Fundamental lemma of variational
calculus

1D:
Let f € Cp, ([a,b]) , —00 < a < b < co satisfies:
b
| @@ ae=o
Vo e C ([a,b]) ,v(a) =v(b) =0

for some k € Np.

Then: f =0.

In higher dimensions:
If f € L*(Q) satisfies:

/Q F(u(x) dx = 0,

Then: f =0.

Yo € Cpo (2)

Convex functions / Lipschitz

Convex functions: Let f € C3(Q).

Then f is convex < f"(z) >0 Vz € Q.
Def. Lipschitz: Eine Funktion f : Q C RY —
Lipschitz stetig mit Lipschitzkonstante L, falls gilt
/) = W < Lllz—yll, VYao,yec

Satz Lipschitz stetig:

Eine differenzierbare Funktion f :

R™ heisst

Q — R ist genau
dann Lipschitz-stetig, wenn ihre erste Ableitung auf Q be-

schrankt ist.
Identities

e Elementary inequality: ab < % + %
e Simple algebraic relation: (a — b)? < 2(a? + b?)
o bla—b)=22 — 2 _ 1(g—b)?

Miscellaneous
Math Thm/Lem/Cor
b d —b
-1_ |a | -
AT = |:c d:| T det(A) [—c a:|
Multiplicative trace inequality:
IC=0©Q) >0

||U‘|i2(ag) < CHu||L2(Q)HuHH1(Q)
Yu € H'(Q)

Rem.:
2
||UHL2(8Q) < CHu||L2(Q)HuHH1(Q)

poincare

< C”“HH(}(Q)”“”Hl(Q)
< Cllull g gy llull (g
< lullpzon) < CHu”Hl(Q)'

Ezxample from lecture:

—pAu+ (8- Viu=f

= — fQ pvAudz + B fﬂ vu, dz + B2 fQ vuy dz =
fﬂ vfde

b1 [o (45 ) da + B2 [, (*5)y da

= 521 Quzdx—&— B2 fQuydx
2 fQ - Vudzx

[— [, div(3

IIU

(Budz + [, 8- hvdS]



