
PDEs

Boundary Conditions
Dirchlet: Fix values of the sol on ∂Ω
Neumann: Fix ∇ of the sol on ∂Ω
Cauchy: D + N on whole ∂Ω
Mixed: D + N on disjoint parts of ∂Ω

Poisson equation{
−∆u(x) = f(x) on Ω

u(x) = g(x) on ∂Ω
(1)

Elliptic, linear, not time dependent, infinite
speed of information

Heat equation


ut = uxx on [0, 1] × (0, T )

u(0, t) = u(1, t) = 0

u(x, 0) = u0(x)

(2)

Parabolic, linear, time dependent, infinite
speed of information

Scalar conservation laws


ut + f(u)x = 0 on [0, 1] × (0, T )

BC
u(x, 0) = u0(x)

(3)

Hyperbolic, time dependent, finite speed of
information

Scalar conservation laws
ut + f(u)x = 0

Burgers’ equation
ut + uux = 0 (⇔)

ut +
(
u2

2

)
x

= 0

|

|

Traffic model
ut +

(
vmax(1− u)u

)
x

= 0

Transport equation
ut + a(x, t)ux = 0

Linear t.e.
ut + aux = 0

Finite difference methods

1. Discretize the domain
1D: ∆x > 0→ N + 2 Points with N = l

∆x − 1

2. Discretize functions and derivatives
uj = u(j ·∆x)

3. Scheme from discretized PDE
⇒ LSE: AU = F

Example I

1D Poisson on (0, 1)
w/ homogeneous Dirichlet BC
2. → −

[
uj+1−2uj+uj−1

∆x2

]
1≤j≤N

= fj

u0 = uN+1 = 0
3. → U = [u1, u2, ..., uN ]
F = [f1, f2, ..., fN ] ·∆x2

A =


2 −1 . . . 0

−1
. . . . . .

...
...

. . . . . . −1
0 . . . −1 2


N×N

Example II

2D Poisson on [0, 1]2

w/ homogeneous Dirichlet BC
2. →
−ui+1,j−2ui,j+ui−1,j

∆x2 − ui,j+1−2ui,j+ui,j−1

∆y2 = fi,j
u0,j = uN+1,j = ui,0 = ui,M+1 = 0
3. row-wise ordering, ∆x = ∆y
→ U = [u1,1, u1,2, ..., u2,1, ..., uN,N ]
F = [f1,1, f1,2, ..., f2,1, ..., fN,N ] ·∆x2

A =


B −I . . . 0

−I
. . .

. . .
...

...
. . .

. . . −I
0 . . . −I B


N2×N2

with

I = N ×N Identity

B =


4 −1 . . . 0

−1
. . .

. . .
...

...
. . .

. . . −1
0 . . . −1 4


N×N

Example III
1D heat eq. on (0, 1)× (0, T )
/ homogeneous Dirichlet BC
2. central in space, forward in time

→
un+1
j −un

j

∆t
− un

j+1−2un
j +un

j−1

∆x2 = 0
un0 = unN+1 = 0 ∀n
u0
j = u0(xj)

3. Solve by explicit time stepping

Stability∥∥∥eh∥∥∥
∞

= max
1≤j≤N

∣∣∣(uj − uhj )
∣∣∣

Examine −
N∑
j=1

ujD
+D−uj =

N∑
j=1

ujfj

Summation by parts & N = 1
h
:

N∑
j=1

(D−uj)
2 ≤ 1

h
‖u‖∞‖f‖∞

Rewrite ui =
i∑

j=1

(uj − uj−1) = h ·
i∑

j=1

1 ·D−uj

|ui| ≤ h

(
i∑

j=1

1

) 1
2
(

i∑
j=1

(D−uj)
2

) 1
2

≤

≤ hN
1
2

(
‖u‖∞‖f‖∞

h

) 1
2

=‖u‖
1
2
∞‖f‖

1
2
∞

⇒‖u‖∞ ≤‖f‖∞

Consistency
Truncation error τ jh = −D+D−uj − fj
‖τh‖∞ ≤

‖f ′′‖∞
12

h2

⇒ lim
h→0
‖τh‖∞ = 0

Convergence
ehj = uj − uhj
D+D−ehj = D+D−uj −D+D−uhj

D+D−uj = −fj
D+D−uhj = −fj −Rj

 −

→ D+D−ehj = Rj

eh0 = ehN+1 = 0

 Poisson equation

⇒
∥∥∥eh∥∥∥

∞
≤

stability
‖Rh‖∞ ≤

truncation error
Ch2

Lax equivalence theorem
For a well-posed and linear IVP:
A FD method is consistent and convergent
⇔ the method is stable

Lem. 2.4.1 (truncation error):∥∥∥u∆x
∥∥∥

∆x,∞
≤ 1

8

∥∥∥f∆x
∥∥∥

∆x,∞
.

Lem. 2.4.2 : If f ∈ C2(0, 1) then:∥∥∥τ∆x
∥∥∥ ≤ ‖f ′′‖∞12

·∆x2.
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Finite element method

1D Poisson equation{
−u′′(x) = f(x) on [0, 1]

u(0) = u(1) = 0

• multiply by test function
• integrate over Ω
• integration by parts / Gauss-Green

⇔
Minimizing Dirichlet energy
J(u) = 1

2

´ 1

0

∣∣u′(x)
∣∣2 dx−

´ 1

0
u(x)f(x) dx

for u ∈ H1
0

(
(0, 1)

)
f ∈ L2

(
(0, 1)

)
Look at critical points J ′(u) ≡ 0

J ′(u) = lim
τ→0

J(u+τv)−J(u)
τ

=
´ 1

0
u′v′ dx−

´ 1

0
fv dx

⇒ Variational Formulation
Find u ∈ V, st.:´ 1

0
u′(x)v′(x) dx =

´ 1

0
f(x)v(x) dx,∀v ∈ H1

0

(
[0, 1]

)
Abstract FEM

Variational formulation:
Find u ∈ V (V is Hilbert space) st:

a(u, v) = l(v) ∀v ∈ V (4)

FEM:
Choose Vh ⊂ V finite dimensional subspace ⇒
Find uh ∈ Vh st:

a(uh, v) = l(v) ∀v ∈ Vh (5)

Let {ϕj}Nj=1 be a basis of Vh. Then:

a(uh, ϕj) = l(ϕj) ∀1 ≤ j ≤ N (6)

Write uh =
∑N
i=1 uiϕi(x).

Then AU = F
with: U = {ui}Ni=1

F = {fi}Ni=1 fi = l(ϕi)
A = {Ai,j}1≤i,j≤N Ai,j = a(ϕi, ϕj)

If a is symmetric, then (16) is equivalent to:
Find u ∈ V st:

J(u) = min
v∈V

{
J(v)

}
(7)

with J(v) = 1
2
a(v, v)− l(v).

If a is symmetric, A is spd.
if a is not symmetric, A is still invertible.

Lax-Milgram theorem
If

• a is continuous:
∣∣a(v, w)

∣∣ ≤ γ‖v‖V‖w‖V
• a is coercive: a(v, v) ≥ α‖v‖2V
• l is continuous:

∣∣l(v)
∣∣ ≤ Λ‖v‖V

then the variational formulation (16) has a unique
solution and is stable: ‖u‖V ≤

Λ
α
.

Boundary conditions
Boundary conditions determine the choice of V:

Boundary Condition

Neumann

u, v ∈ H1(Ω)

Dirichlet

inhomo.
BC

u ∈ H1(Ω)
st. BC

v ∈ H1
0(Ω)

homo.
BC

u, v ∈ H1
0(Ω)

Solving Poisson equation with inhomogeneous
Dirichlet BC u(x) = g(x) on ∂Ω → u ∈ H1(Ω):
Define u = u0 + g̃

g̃ =

{
g(x) on ∂Ω

0 else
⇒ u0 ∈ H1

0(Ω)

⇒

{
−∆u0 = f + ∆g̃ inΩ

u0 = 0 on∂Ω

In LSE: order nodes st boundary terms come last[
A00 A0∂

A∂0 A∂∂

][
U0

G∂

]
=

[
F0

F∂

]
⇒

A00U0 = F0 −A0∂G∂

setDirichletBoundary(u, interiorVertexIndices,
↪→ vertices, triangles, bc_fct);

F −= A ∗ u;

Sparsematrix AInterior;
igl::slice(A, interiorDofs, interiorDofs, Ainterior);

Vector FInterior;
igl::slice(F, interiorDofs, FInterior);

Eigen::SimplicialLDLT<SparseMatrix> solver;
solver.compute(AInterior);

Vector UInterior = solver.solve(FInterior);
igl::slice_into(UInterior, interiorDofs, u);

Neumann boundary conditions are considered
when finding the variational formulation.

Error
eh(x) = u(x)− uh(x)
Exact solution:
a(u, v) = l(v) ∀v ∈ V
∴ a(u, v) = l(v) ∀v ∈ Vh

FEM soluton:
a(uh, v) = l(v) ∀v ∈ Vh

Subtract → Galerkin orthogonality:

a(eh, v) = 0 ∀v ∈ Vh (8)

Choose w = uh − v for a v ∈ Vh, write
‖eh‖2H1

0
≤ 1

α
a(eh, eh) + a(eh, w) and use Galerkin

orthonormality to show Cea’s inequality:
‖eh‖V ≤

γ
α
‖u− v‖V ∀v ∈ Vh

∴ FEM error is bounded by interpolation error.

1D:



p-order basis functions
Ihu(d) = u(d) ∀d (for p=2: d=Vertex,Midpoint)

‖eh‖H1
0
≤ Chmin{p+1,k}−1‖u‖Hk

‖eh‖L2 ≤ Chmin{p+1,k}‖u‖Hk

with p: order of FEM basis
k: "nicenessöf solution

Ex: Piecewise linear basis (p = 1)

‖eh‖H1
0
≤ Ch‖u‖H2

‖eh‖L2 ≤ Ch2‖u‖H2

2D:


‖eh‖H1

0
≤ C(cmin, cmax)h

∥∥∥D2u
∥∥∥

L2

If Ω is convex:∥∥∥D2u
∥∥∥

L2
≤ C‖f‖L2
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Implementation
Implement AU = F
Integrate element-wise
Locality of basis: Ai,j = a(ϕi, ϕj) =∑
m akm(ϕiϕj)

fi = l(ϕi) =
∑
m lkm(ϕi)

Summands only nonzero if i, j on the same trian-
gle km → compute local element stiffness matrix /
load vector and assemble global stiffness matrix /
load vector.
Integrate on reference triangle
Use affine linear map from
reference triangle k̂ = {(0, 0), (1, 0), (0, 1)}
to real triangle k = { ~NA, ~NB , ~NC}:
Jk =

[
~NB − ~NA ~NC − ~NA

]
d×d

Φk(x̂) = ~NA + Jkx̂
Φ−1
k (x) = J−1

k (x− ~NA)
ϕkα: shape function at vertex α of triangle k
ϕ̂α: shape function at vertex α of refrence triangle
ϕkα = ϕ̂α(Φ−1

k (x)) ϕ̂α(x̂) = ϕkα(Φ(x̂))
∇ϕkα = J−Tk ∇ϕ̂(x) ∇ϕ̂α(x̂) = JT∇ϕk∇(x̂)
→ Ai,j =

∑
m âkm(ϕ̂i, ϕ̂j)

fi =
∑
m l̂km(ϕ̂i)

Example:{
∆u = f in Ω

u = 0 on ∂Ω

Ai,j =
´

Ω
∇ϕi(x) · ∇ϕj(x) dx

=
∑
k

´
k
∇ϕi(x) · ∇ϕj(x) dx

=
∑
k

´
k̂
(J−Tk ∇ϕ̂i(x̂)) · (J−Tk ∇ϕ̂j(x̂))|detJkm |dx̂

fi =
´

Ω
f(x)ϕi(x) dx

=
∑
k

´
k
f(x)ϕi(x) dx

=
∑
k

´
k̂
f(Φk(x̂))ϕi(x̂)|detJk|dx̂

Pseudocodes
Compute element stiffness matrix Ak

For α = 0, 1, 2
For β = 0, 1, 2
Akα,β = integrate(J−Tk ∇ϕ̂α · J

−T
k ∇ϕ̂β |detJk|)

Assemble global stiffness matrix A
For each triangle k
Ak = compute local stiffness matrix
I = (i, j, k) indices of vertices of k
For α = 0, 1, 2
For β = 0, 1, 2
A(I(α), I(β))+ = Akα,β

Compute element load vector Fk

For α = 0, 1, 2
F kα = integrate(ϕ̂αf(Φk(x̂))|detJk|)

Assemble global load vector F
For each triangle k
Fk = compute element stiffness matrix
I = (i, j, k) indices of vertices of k
For α = 0, 1, 2
F (I(α))+ = F kα

Chapter 4: FEM
4.1 1D Poisson
4.1.0 The energy method
Lem. Poincaré:

ˆ 1

0

|u(x)| dx ≤
ˆ 1

0

|u′(x)|2 dx (9)

Furthermore, the estimate (22) and the Poincaré
inequality (9) can be written as: ||u||L∞ ≤ ||u||H′0
and ||u||L2 ≤ ||u||H0 .
We can further summarize the estimates (22)-(24)
as:

||u||L2 ≤ ||f ||L2

||u||L∞
Poincaré
≤ ||u||H′0 ≤ ||f ||L2 (10)

||u||L∞ ≤ ||f ||L2

Uniqueness: An immediate consequence of the
energy estimates (10) is the following Lemma Lem.
Uniqueness: The solutions of the Poisson equati-
on (2) are unique.

4.1.1 Variational formulation
4.12 Finite element formulation
Ex. S4A1a: The evolution of the temperature dis-
tribution u = u(x, t) in a homogeneous "2D bo-
dy"(occupying the space Ω ⊂ R2) with convective
cooling is modeled by the linear second-order para-
bolic initial-boundary value problem (IBVP) with
flux (spatial) boundary conditions:

∂u

∂t
−∆u = 0 in Ω× [0, T ],

−∇u · n = γu on ∂Ω× [0, T ], (11)
u(x, 0) = u0(x) in Ω,

with γ > 0. For the semi-discretization of (11) we
employ linear finite elements on a triangular mesh
M of Ω with polygonal boundary approximation.
Derive the spatial variational formulation of the

form m(u̇, v) + a(u, v) = l(v) for (11), with suita-
ble bilinear forms a amd m, and a linear form l.
Specify the function spaces for u(t, ·) and the test
function v.

Solution. find u ∈ H1(Ω), s.t ∀ v ∈ H1(Ω)

ˆ
Ω

u̇v dx︸ ︷︷ ︸
=m(u̇,v)

+

ˆ
Ω

∇u · ∇v dx+

ˆ
∂Ω

γuv dS︸ ︷︷ ︸
=a(u,v)

= 0︸︷︷︸
=l(v)

.

With V = H1
0 ([0, 1]), the variational formulation

of the one-dimensional Poisson equation is: Find
u ∈ V such that for all v ∈ V it holds that:ˆ 1

0

u′(x)v′(x) dx =

ˆ 1

0

v(x)f(x) dx. (12)

Using the notation (g, h) :=
´ 1

0
g(x)h(x) dx, we

may write (12) concisely as

(u′, v′) = (f, v) ∀ v ∈ V.

V h =


w : [0, 1]→ Rs.t.w is continuous,
w(0) = w(1) = 0, and w|[(j−1)h,jh]

is linear ∀ j ∈ {1, . . . , N + 1}


Find uh ∈ V h such that for all v ∈ V h it holds
that (u′h′ , v

′) = (f, v) (FEM).

4.1.3 Concrete realisation of FEM
Definition hat/tent functions:

ϕj(x) =


x−xj−1

h
x ∈ [xj−1, xj),

xj+1−x
h

x ∈ [xj , xj+1),
0 otherwise.

Then ϕj(xi) = δij and

ϕj(x)′ =


1
h

x ∈ [(j − 1)h, jh),
− 1
h

x ∈ [jh, (j + 1)h],
0 otherwise.

Given a function w ∈ V h, it clearly holds that

w(x) =

N∑
j=1

wjϕj(x), with wj = w(xj).

〈Aw,w〉 =

N∑
i,j=1

wiAijwj =
∑
i,j=1

wi(ϕ
′
i , ϕ

′
j)wj

=

 N∑
i=1

wiϕ
′
i ,
∑
j=1

‘Nwjϕ
′
j


= (w̄′, w̄′)

if w̄ 6=0
> 0.

4.1.4 Computing stiffness matrix and vectorload
For all i, j = 1, . . . , N : Aij = (ϕ′i , ϕ

′
j) =

=


0 |i− j| > 1,
− 1
h

|i− j| = 1,
1
h2

´ xj+1

xj−1
1 dx = 2

h
|i− j| = 0.

Therefore, the matrix A is given by

A =
1

h



2 −1 0 . . . 0

−1 2 −1
...

0
. . .

. . .
. . . 0

... −1 2 −1
0 . . . 0 −1 2


4.1.5 Convergence Analysis
Definition Error Function: eh := u− uh.
Galerkin orthog.: (u′, v′) = (f, v) and
(u′h, v

′) = (f, v) =⇒ (eh, v
′) = 0.

Define; w = uh − v ∈ V h. Then

||eh||2H1
0 ([0,1]) =

ˆ 1

0

|e′h(x)|2 dx = (e′h, e
′
h)

= (e′h, e
′
h) + (e′h, w

′) (because of Gal. orth.)
= (e′h, (e

′
h + w′)) = (e′h, (u− v)′)

=

ˆ 1

0

e′h(x)(u′(x)− v′(x)) dx

CS

≤

(ˆ 1

0

|e′h|2 dx

)1/2

·

(ˆ 1

0

|u′ − v′|2 dx

)1/2

= ||eh||H1
0 ([0,1]) · ||u− v||H1

0 ([0,1]).

Hence, for all v ∈ V h it holds that

||eh||H1
0 ([0,1]) ≤ ||u− v||H1

0 ([0,1]).

Cea’s Lemma: In other words, for all v ∈ V h it
holds that

||u− uh||H1
0 ([0,1]) ≤ ||u− v||H1

0 ([0,1]). (13)

Define such a v =: Ihu. Then

||u− Ihu||H1
0 ([0,1]) ≤ Ch, (14)

where C is a constant that depends on
max0≤y≤1 |u′′(y)|. (13) and (14) imply that

||eh||H1
0 ([0,1]) ≤ ||u− uh||H1

0 ([0,1]) ≤ Ch.

Thus, the FEM converges to the exact solution as
h→ 0 and the rate of convergence in the H1

0 ([0, 1])
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norm is at least 1. In order to obtain a correspon-
ding error erstimate for the L2([0, 1]) norm, we can
use the Poincaré inequality (9) to obtain

||u− uh||L2([0,1]) ≤ Ch. CRUDE!

Aubin-Nitze trick:
Duel problem: Find ϕ ∈ H1

0 such that

−ϕ′′(x) = eh(x) (15)
ϕ(0) = ϕ(1) = 0

||eh||2L2 =

ˆ 1

0

eh(x)eh(x) dx

(15)
= −

ˆ 1

0

ϕ′′(x)eh(x) dx

i.b.p
=

ˆ 1

0

ϕ′(x)e′h(x) dx

= (e′h, ϕ
′)− (e′h,

′
(Ihϕ)︸ ︷︷ ︸

=0 by Gal.Orth

)

= (e′h, (ϕ
′ − (Ihϕ))′)

C.S.

≤ ||eh||H1
0
||ϕ− Ihϕ||H1

0

Int.err.
≤ C1h · C2h||ϕ′′||L2 ≤ Ch2||ϕ′′||L2

(15)

≤ Ch2||eh||L2

=⇒ ||eh||L2 ≤ Ch2 which is a better error esti-
mate.

4.2.4. Numerical Experiments in 2D
Rem. 4.2.4:
2D: h = O(N−

1/2)
1D: h = O(N−1)
⇔ EOCH1

0
(h) = 2EOC(N)

Rem.: u ∈ H1
0 ⇒ u ∈ L2

Von Neumann BC :
Find u ∈ H1(Ω) s.t.:´

Ω
〈∇u,∇v〉 dx+

´
Ω
uv dx =

´
Ω
fv dx+

´
Γ
gv dS

∀v ∈ H1(Ω)
i.b.p.⇔ ...⇔´

Ω
(−∆ + u− f)v dx =

´
Γ
(− ∂u

∂v
+ g)v dS

1. H1
0 (Ω) ⊂ H1(Ω), choose v ∈ H1

0 (Ω) :

⇒
´

Ω
(−∆ + u− f)v dx = 0, ∀v ∈ H1

0 (Ω)
⇒ −∆ + u = f, ∀x ∈ Ω.

2.
´

Γ
(− ∂u

∂v
+ g)v dS = 0, ∀v ∈ H1(Ω)

⇒ ∂u
∂v

= g, on Γ (boundary)

Triangulation
Split Ω in non-overlapping triangles with no
hanging nodes.
h = max

k∈Th

{diam(k)} ; diam(k) for ex. longest edge

of k

Shape-regular triangulation
Th is shape regular if ∃ constants cmin, cmax, s.t.
cminh ≤ diam(k) ≤ cmaxh ∀k ∈ Th
⇔ Triangles in Th are of similar shape and size.

Representing triangulations
List of vertices:

Z =

vx1 vx2 . . . vxNv

vy1 vy2 . . . vyNv

vz1 vz2 . . . vzNv

 ∈ Rdim×Nv

List of triangles:

T =

i1 i2 . . . iNT

j1 j2 . . . jNT

k1 k2 . . . kNT

 ∈ Ndof×NT
+

Coordinates of the i-th vertex of the j-th triangle:
Z(·, T (i, j)).
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Heat equation


ut = uxx on (0, 1)× (0, T )

u(0, t) = u(1, t) = 0

u(x, 0) = u0(x)

(16)

Fourier’s method
Separation of variables:
→ u(x, t) =

∑∞
k=−∞ ak sin(kπx)e−(kπ)2t

Find ak for given u0 by:
ak = 2

´ 1

0
u0(x) sin(kπx) dx

Algorithm for Fourier’s method (Spectral method):
1. Given u0, obtain ak by quadrature
2. Truncate the initial expansion

u0
K(x) =

K∑
k=−K

ak sin(kπx)

3. Evaluate approximate solution

uK(x, t) =
K∑

k=−K
ak sin(kπx)e(−kπ)2t

Numerical schemes
λ = ∆t

∆x2

E∆
L2 = ∆x

∑
j

∣∣unj − u(xj , t
n)
∣∣2

Truncation error: "plug exact solution into nume-
rical scheme", has the same scaling as E∆

L2 .

Rem. spatial central and temporal forward diff :

|uxx(xj , t
n)− un

j+1−2un
j +un

j−1

∆x2 | ≤ C∆x2

|ut(xj , tn)−
un+1
j −un

j

∆t
| ≤ C∆t

Explicit FD
Central in space, forward in time[
un+1
j −un

j

∆t
=

un
j+1−2un

j +un
j−1

∆x2

]
2≤j≤N−1

un+1
1 −un

1
∆t

=
un

2−2un
1

∆x2

un+1
N
−un

N

∆t
=

un
N−1−2un

N

∆x2

u0
j = u0(xj)

Update Form
un+1
j = λunj+1 + (1− 2λ)unj + λunj−1

un+1
1 = λun2 + (1− 2λ)un1
un+1
N = λunN−1 + (1− 2λ)unN

stable iff λ ≤ 1
2

Truncation error:
τnj =

un+1
j −un

j

∆t
− un

j−1−2un
j +un

j+1

∆x2

E∆ ≤ C(∆t+ ∆x2) ≤ C(∆x2)
Implicit FD
Central in space at tn+1, backward in time[
un+1
j −un

j

∆t
=

un+1
j+1−2un+1

j +un+1
j−1

∆x2

]
2≤j≤N−1

un+1
1 −un

1
∆t

=
un+1

2 −2un+1
1

∆x2

un+1
N
−un

N

∆t
=

un+1
N−1

−2un+1
N

∆x2

u0
j = u0(xj)

Update form
unj = −λun+1

j+1 + (1 + 2λ)un+1
j − λun+1

j−1

un1 = −λun+1
2 + (1 + 2λ)un+1

1

unN = −λun+1
N−1 + (1 + 2λ)un+1

N

⇒ LSE: AUn+1 = Un

A =


1 + 2λ −λ . . . 0

−λ
. . .

. . .
...

...
. . .

. . . −λ
0 . . . −λ 1 + 2λ


N×N

unconditionally stable
E∆ ≤ C(∆t+ ∆x2)
Crank-Nicholson scheme
Linear combination of explicit and implicit[
un+1
j −un

j

∆t

=
un
j+1−2un

j +un
j−1+un+1

j+1−2un+1
j +un+1

j−1

2∆x2

]
2≤j≤N−1

un+1
1 −un

1
∆t

= 1
2∆x2 (un2 − 2un1 + un+1

2 − 2un+1
1 )

un+1
N
−un

N

∆t
= 1

2∆x2 (unN−1 − 2unN + un+1
N−1 − 2un+1

N )
Update form:[
λ
2
un+1
j+1 + (1 + 2λ)un+1

j − λ
2
un+1
j−1 =

λ
2
unj+1 − (1− λ)unj + λ

2
unj−1

]
2≤j≤N−1

−λ
2
un+1

2 + (1 + λ)un+1
1 = λ

2
un2 + (1− λ)un1

−λ
2
un+1
N−1 + (1 + λ)un+1

N = λ
2
unN−1 + (1− λ)unN

⇒ LSE AUn+1 = BUn

A =


1 + λ −λ

2
. . . 0

−λ
2

. . .
. . .

...
...

. . .
. . . −λ

2

0 . . . −λ
2

1 + 2λ


N×N

B =


1− λ λ

2
. . . 0

λ
2

. . .
. . .

...
...

. . .
. . . λ

2

0 . . . λ
2

1− 2λ


N×N

CN is unconditionally stable, but can generate
small spurious extrema when λ > 1.
E∆ ≤ C(∆t2 + ∆x2)
FEM
Find uh ∈ Vh ⊂ H1

0(Ω) st
∆t
((
un+1
h

)
x
, vx
)
L2 +

(
un+1
h , v

)
L2 =

(
unh, v

)
L2 ∀v ∈

Vh

Energy principle
E(t) = 1

2

´
Ω
u2(x, t) dx

En(t) = ∆x
2

∑
j(u

n
j )2

E(t) ≤ E(0) (17)

Show dE
dt
≤ 0 by PI+BC.

Consequences
Stability
Let u, v solve the heat equation. Then w = u − v
solves it as well, so by the energy principle:´ 1

0
|u− v|2 dx ≤

´ 1

0
|u0 − v0|2 dx

Pertubations get smaller
Uniqueness
If u, ũ both solve the heat equation with the same
initial data, then by stability:
u(x, t) = ũ(x, t) ∀(x, t)
w := u− (̃u)⇒ w = u0(x)− u0(x) = 0⇒ u = ũ
(initial condition & energy fct)
Consistency of Fourier’s method
As K →∞, u0

K → u0 and by stability, uK → u.
Stability of numerical schemes
Stable in the sense that they satisfy the energy
principle:
Explicit iff λ < 1

2

Implicit unconditional
CN unconditional

This can be shown by manipulating the numerical
scheme in it’s operator representation.

Maximum principle

ūn = maxj{unj }
un = minj{unj }

min{0, u0(x)} ≤ u(x, t) ≤ max{0, u0(x)} ∀(x, t)
⇒ un ≤ un+1 ≤ ūn+1 ≤ ūn

Show by contradiction, uxx(x0, t0)
!
< 0 and the

heat equation that the strict maximum of u(x, t)
can’t lie in the interior or at t = T . Remove the
possibility for a non-strict maximum by arguing
similarly about uε = u(x, t) − εt. And in the end
let ε→ 0.

Consequences Stability of numerical schemes
Stable in the sense that they satisfy the maximum
principle:
Explicit iff λ < 1

2

Implicit unconditional
CN iff λ < 1

This can be shown by manipulating the scheme in
it’s update form.

Computational work
W ∼ mesh points x time steps, i.e. 1

∆x ·
1

∆t = 1
∆x3 (expl.

case)
Explicit (CFL: ∆x2 ∼ ∆t� 1):
E∆
ex ∼ ∆t+ ∆x2 ∼ ∆x2

Wex ∼ 1
∆x∆t

∼ 1
∆x3 ( 1

∆xd+2 )

⇒ ∆x ∼W−1/3

→ E∆
ex ∼W−

2
3

Implicit (∆t ∼ ∆x� 1):
E∆
im ∼ ∆t+ ∆x2 ∼ ∆x

Wim ∼ 1
∆x∆t

∼ 1
∆x2 ⇒ ∆x ∼W−1/2

→ E∆
im ∼W−

1
2

Crank-Nicholson (∆t ∼ ∆x� 1):
E∆
CN ∼ ∆t2 + ∆x2 ∼ ∆x2

Wex ∼ 1
∆x∆t

∼ 1
∆x2 ⇒ ∆x ∼W−1/2

→ E∆
ex ∼W−1

→ for the same amount of work, E∆
im > E∆

ex >
E∆
CN .
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Scalar conservation laws{
ut + f(u)x = 0

u(x, 0) = u0(x)
(101)

Method of characteristics
For a scalar conservation law written as{
ut + a(u, x, t)ux = 0

u(x, 0) = u0(x)

choose the ansatz{
ẋ(t) = a(u, x(t), t)

x(0) = x0

to find curves on which u(x, t) is constant.
d
dt
u(x(t), t) = ut + uxẋ = 0

⇒ u(x(t1), t1) = u(x(t2), t2) ∀(t1, t2)
The solution is then
u(x(t), t) = u(x(0), 0) = u0(x0)

Transport equation
Scalar conservation law with f(u)x = a(x, t)ux.

Solution via characteristics
Linear transport equation: a ∈ R
ẋ(t) = a (equation of characteristics) [solve this ODE]
→ x(t) = at + x0, x0 = x(0) [only for const. a, solve
for t to do the t-x plane plot!]
→ u(x, t) = u0(x0) = u0(x− at)

Energy principle
For limx→±∞ u(x, t) = 0 ∀t, ‖ax‖∞ <∞
dE(t)

dt
≤‖ax‖∞E(t)⇔ E(t) ≤ E(0)e ‖ax‖∞t

Proof : multplying (101) by u, chain rule, product rule, in-
tegrate over space, decay to zero at infinity, regularity of
a, Gronwall’s inequality
→ FD central in space, forward in time is uncon-
ditionally unstable.

Scheme
a(x, t) dictates direction and speed of propagation
of information.
Characteristics → u(x, t) = u0(x− at) for a ∈ R[
a > 0 −→

]
|
[
a < 0 ←−

]
Domain of dependence ⊆ numerical stencil
u(x, t+ ∆t) = u0(x− a(t+ ∆t)) =
u0((x− a∆t)− at) = u(x− a∆t, t) if a ∈ R

→ Simple centered FD scheme
un+1
j −un

j

∆t
+

a(un
j+1−u

n
j−1)

2∆x
= 0, for j = 1, ..., N − 1

→ Upwind scheme
a+ = max(a, 0), a− = min(a, 0)
|a| = a+ − a−, a = a+ + a−

un+1
j −un

j

∆t
+ a+ un

j −u
n
j−1

∆x
+ a−

un
j+1−u

n
j

∆x
= 0

⇔
un+1
j −un

j

∆t
+
a(un

j+1−u
n
j−1)

2∆x
= |a|

2∆x
(unj+1−2unj +unj−1)

Lem. 2.3 : If |a| ∆t
∆x
≤ 1 then En+1 ≤ En.

Example exam: We consider the equation{
ut + ux = cu, c > 0

u(x, 0) = u0(x)

Modify the upwind scheme to include the RHS cu:
un+1
j = unj − ∆t

∆x
(unj − unj−1) + c∆tunj

Weak solutions
u ∈ L∞ (R× R+) is a weak solution of (??) if´
R+

´
R(uϕt + f(u)ϕx) dxdt+´

R u0(x)ϕ(x, 0) dx = 0 ∀ϕ ∈ C1
c (R× R+)

Every classical (strong) solution is a weak solution.
If a function is a weak solution and smooth (C1),
it is a classical solution.

Burgers’ equation

Scalar conservation law with f(u) = u2

2

ut + (u
2

2
)x = 0 (conservative form)

ut + uux = 0 (non-conservative form)

Riemann problem
ut + f(u)x = 0

u0 =

{
uL if x < 0

uR if x > 0

Characteristics:{
ẋ(t) = u(x(t), 0)

x(0) = x0

⇒

{
if x0 < 0 : x(t) = x0 + uLt

if x0 > 0 : x(t) = x0 + uRt

uL > uR → characteristics intersect → shock
uL < uR → domains without characteristics →
rarefaction

Shockwave: uL > uR

Rankine-Huginot condition
If u is a weak solution and u is smooth except for a
jump discontinuity Σ =

{
x : x = σ(t)

}
, then away

from Σ, u is a classical solution.
At Σ,
f(uR(t))− f(uL(t)) = σ̇(uR(t)− uL(t))

⇔ σ̇ = f(uR(t))−f(uL(t))

uR(t)−uL(t)
,

with uL, uR being the left, right limits at the jump.

→ Use to find expression for σ(t).

u(x, t) =

{
uL if x < σ̇t

uR if x > σ̇t

Rarefaction wave: uL < uR

Solutions obtained by RH don’t satisfy entropy
conditions in this case.
Self-similar solution
If f(u) is convex, u(x, t) = f ′−1(x

t
) in points where

there are no characteristics.

u(x, t) =


uL if x ≤ f ′(uL)t

f ′−1(x
t
) if f ′(uL)t < x < f ′(uR)t

uR if x ≥ f ′(uR)t

(Just linearly connect the two constant regimes)

Combined shock/rarefaction

In the case of multiple discontinuities, a rarefaction
wave can catch up to a shock (or vice versa).
Treat that point in time as IC for a new Riemann
problem.
Take care when using RH: Insert analytical expres-
sion for uR/uL, set x = σ(t) and solve ODE.
S5A1a):
t = 1

2
t+ 1⇔ t = 2

σ′(t) = f(ur(σ(t),t))−f(u`(σ(t),t))
ur(σ(t),t)−u`(σ(t),t)

= 1
2
σ(t)
t

⇒

{
σ′(t) = 1

2
σ(t)
t

σ(2) = 2
(solve) ⇒ σ =

√
2t

u(x, t) =


0, x ≤ f ′(u`)t = 0
x
t
, f ′(u`)t = 0 < x ≤ σ =

√
st

0, x > σ =
√

2t; ; for t > 2.

Entropy condition

For some IC (uL > uR → rarefaction), there is a
region without characteristics. In this case, we can
find infinitely many weak solutions for the same
IC. There, the entropy condition imposes a unique
solution.

’Information cannot be created, only lost’ →
characteristics can only flow into a shock ↔ cha-
racteristics can’t intersect backwards for t > 0

Lax entropy condition

If f(u) is strictly convex, the entropy condition
states
uR(t) ≤ uL(t)⇔ f ′(uR) ≤ f ′(uL)

General entropy condition
By considering a viscous problem
uεt + f(uε)x = εuεxx; εuεxx = viscous term

uε(x, 0) = u0(x)

0 < ε� 1

and functions
Entropy func S : R 7→ R,
any strictly convex function
Entropy flux Q : Q(u) =

´ u
0
f ′(τ)S′(τ) dτ

we find S(uε)t +Q(uε)x ≤ εS(uε)xx.
If we let ε → 0, we get the entropy condition for
general initial data for scalar conservation laws:
S(u)t +Q(u)x ≤ 0
this is calles entropy inequality, where S is entropy
fct and Q is entropy flux.
Def. 3.7 : An entropy solution u(x, t) for a general
conservation law (101)

• u ∈ L∞ (R× R+)
• u is a weak solution
• u satisfies

´
R

´
R+

(
S(u)ϕt +Q(u)ϕx

)
dxdt ≥ 0

∀ϕ ∈ C1
c (R× R+) , ϕ ≥ 0.

If f(u) is strictly convex, entropy solutions satisfy
the Lax entropy condition.
Entropy solutions exist and are unique.

Bounds on entropy solutions
Integrate over R:
→ d

dt

´
R S(u) dx ≤ 0

→ Choose S = |u|
p

p

⇒
∥∥u(·, t)

∥∥
Lp ≤‖u0‖Lp

→ Maximum principle for p→∞

Oscillations of entropy solutions
Multiply both sides of the viscous problem with
(−sign(ux)x) and integrate over space →
d
dt

´
R|ux| dx ≤ 0⇒

´
R

∣∣ux(x, t)
∣∣dx ≤ ´R∣∣u′0(x)

∣∣dx
Fourier law : F (u) = −k∇u.

Rem.: How to show that a result is a weak soluti-
on?
Don’t have to look at the integral formulation.

• check smoothness
• check RH at shock.
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Finite volume methods

Dealing with discontinuous functions→ work with
averages instead of point values.
Discretize domain into cells
Points ∆x = xR−xL

N+1
; tn = n∆t

(N+2) xj = xL + (j + 1/2)∆x
xj−1/2 = xj − ∆x/2 = xL + j∆x

Cell Cj =
[
xj−1/2, xj+1/2

)
]

Cell avgs Unj ≈ 1
∆x

´ xj+1/2

xj−1/2
u(x, tn) dx

Fluxes F̃nxj+1/2
= 1

∆t

tn+1´
tn

f(uL(xj+1/2, t)) dt

F̃nxj−1/2
= 1

∆t

tn+1´
tn

f(uR(xj−1/2, t)) dt

The integral form of the conservation law is then

Un+1
j = Unj −

∆t

∆x

(
F̃nxj+1/2

− F̃nxj−1/2

)
(18)

Information flow :
Information propagates from left to right:

∂xu =
uk
j−u

k
j−1

∆x

Godunov method

There is a Riemann problem at each cell interface:


ut + f(u)x = 0

u(x, tn) =

{
Unj if x < xj+1/2

Unj+1 if x > xj+1/2

(19)

Solutions to Riemann problems are self-similar, so
the solution can be written as:
ūj(x, t) = ūj

(
x−xj+1/2

t−tn

)
At the cell interface,

x−xj+1/2

t−tn ≡ 0, so ūj(xj+1/2, t)
is constant and so is the flux f(u(xj+1/2, t)) =
f(ūj(0)).
f(ūRj (0)) = f(ūLj (0)) holds in the case of rare-
faction (ūj is continuous) and shock (RH with
stationary shock), so the Riemann flux Fnj+1/2

is well defined, Fnj+1/2 = F̃nj+1/2 and (23) is the
standard form of a finite volume scheme for con-
servation laws.

Maximum wave speed gives CFL-condition:
maxj

∣∣f ′(Unj )
∣∣ ∆t

∆x
≤ 1

2

Godunov flux

Explicitly calculate the fluxes
Fnj+1/2 = F (Unj , U

n
j+1) =

=


min

Θ∈[Un
j ,U

n
j+1]

f(Θ) if Unj ≤ Unj+1

max
Θ∈[Un

j+1,U
n
j ]
f(Θ) if Unj ≥ Unj+

If f(u) has no maxima
minima

exactly one minimum
maximum

at ω in
an interval (a, b) "⇔"f(u) is convex

concave:
(ω is a minimum/maximum)

Fnj+1/2 = max
min

{
f
(
max
min{U

n
j , ω}

)
, f
(
min
max{U

n
j+1, ω}

)}
The Godunov flux gives good results, but it is
expensive to compute for general fluxes and relies
on an explicit formula for solutions of the Riemann
problem (not available for more complex problems
than scalar conservation laws).
Ex. The flux in the case of the Burgers has a unique
minimum at u = 0 (convex).

Roe’s scheme

Linearize the Riemann problem
Replace f(u)x by Âj+1/2Ux in in (24).
For example

Âj+1/2 = f ′
(
Un

j+1/2−U
n
j−1/2

2

)
or Roe’s choice:

Âj+1/2 =


f(Un

j+1)−f(Un
j )

Un
j+1−U

n
j

if Unj+1 6= Unj

f ′(Unj ) if Unj+1 = Unj
The explicit solution of the linearized Riemann
problem yields:

Fn,Roe
j+1/2 =

{
f(Unj ) if Âj+1/2 ≥ 0

f(Unj+1) if Âj+1/2 < 0

Roe’s scheme is fast and yields correct results for
shocks, but gives solutions for rarefaction which
don’t satisfy the entropy condition. This is becau-
se the linearized Riemann problem is solved by just
one wave (correct for shock, should be two for ra-
refaction)
Rem.: • Roe computes weak sol’s not the entropy sol.
• Since the Roe flux approximates the local Riemann pro-
blems using only one wave, it should not resolve the ra-
refaction wave correctly and hence both the L1 and L∞

errors should not converge.

Central schemes

The solution of the Riemann problem is appro-
ximated by a left- (speed slj+1/2) and a right-
travelling (srj+1/2) wave.

This gives a solution

u(x, t) =


Unj if x < slj+1/2t

U∗j+1/2 if slj+1/2t ≤ x ≤ srj+1/2t

Unj+1 if x > srj+1/2t

With RH, we can determine the intermediate flux
f∗j+1/2 to be

f∗j+1/2 =


sr
j+1/2

f(Un
j )−sl

j+1/2
f(Un

j+1)+sl
j+1/2

sr
j+1/2

(Un
j+1−Un

j )

sr
j+1/2

−sl
j+1/2

if srj+1/2 6= −s
l
j+1/2

f(Un
j )+f(Un

j+1)−sj+1/2(Un
j+1−Un

j )

2

if srj+1/2 = −slj+1/2 = sj+1/2

The numerical flux is then

Fnj+1/2 =


f(Unj ) if slj+1/2, s

r
j+1/2 ≥ 0

f∗j+1/2 if slj+1/2 ≤ 0 ≤ srj+1/2

f(Unj+1) if slj+1/2, s
r
j+1/2 ≤ 0

Choice of wavespeeds
Lax- srj+1/2 = ∆x

∆t
, slj+1/2 = −srj+1/2

Friedrichs Maximum speed without
waves interacting

Rusanov srj+1/2 = max{|f ′(Unj )|, |f ′(Unj+1)|},
slj+1/2 = −srj+1/2

Local max. speed for both waves
Both choices lead to approximations of the entro-
py solution, but are diffusive (LF more so than
Rusanov).

Lax-Friedrichs flux

Fnj+1/2 = FLxF(unj , u
n
j+1)

=
f(un

j )+f(un
j+1)

2
− ∆x

2∆t
(unj+1 − unj )

Rusanov flux

Fnj+1/2 = FRus(unj , u
n
j+1) =

f(un
j )+f(un

j+1)

2

− max(|f ′(un
j )|,|f ′(un

j+1)|)
2

(unj+1 − unj )

Engquist-Osher scheme

Flux : Fnj+1/2 = FEO(unj , u
n
j+1)

=
f(un

j )+f(un
j+1)

2
− 1

2

un
j j+1´
un
j

|f ′(θ)|dθ

When the flux fuct has a single minimum at a point ω and
no maxima, the EO flux can be explicitly computed as

FEO(unj , u
n
j+1)

= f(max(unj , ω)) + f(min(unj+1, ω))− f(ω)
EO scheme for convex fluxes:
FEO(unj , u

n
j+1) = f+(unj ) + f−(unj+1), where

f+(u) = f(max(u, ω)), f−(u) = f(min(u, ω)) posi-
tive (increasing) and negative (decreasing), i.e. EO scheme
is a flux splitting scheme.
Rem.: Godunov & EO best in this case.

Analysis

Conservative, consistent, monoto-
ne schemes

Rewrite (23) in update form:
Un+1
j = Unj − ∆t

∆x
(F (Unj+1, U

n
j )− F (Unj , U

n
j−1))

= H(Unj+1, U
n
j , U

n
j−1)

• A scheme is conservative ⇔∑
j U

n+1
j =

∑
j U

n
j

• A scheme is consistent ⇔
F (a, a) = f(a)⇒ H(a, a, a) = a

• A scheme is monotone ⇔
H(a, b, c) is a non-decreasing function
in each of its arguments ⇔
∂H
∂a
≥ 0, ∂H

∂b
≥ 0, ∂H

∂c
≥ 0

Conservative Consistent Monotone

Godunov ! ! !

Roe ! ! %

LF ! ! !

Rusanov ! ! !

Central ! ! %

(under the CFL condition)
Thm. 4.5. (Conservative schemes) Assume that
H(0, ..., 0) = 0. Then Un+1

j = H(un
j−n, ..., u

n
j+p) is conser-

vative iff there exists a fct Fn
j+1/2 = F (un

j−p+1, ..., u
n
j+p)

s.t. Un+1
j = H(un

j−n, ..., u
n
j+p) can be written in the FV

form un+1
j = un

j − ∆t
∆x (Fn

j+1/2 − F
n
j−1/2).

Lem. 4.8. (Monotone schemes) A FV scheme

un+1
j = un

j − ∆t
∆x (Fn

j+1/2 − Fn
j−1/2) with a two-point

flux F = F (a, b) is monotone if F is a Lipschitz conti-
nuous, differentiable fct in both arguments, non-decreasing
in its first argument and non-increasing in its second ar-
gument. The following holds too,
a 7→ F (a, b) is non-decreasing for fixed b,
b 7→ F (a, b) is non-increasing for fixed a,
and the following CFL-type condition holds:
| ∂F
∂x1

(b, c)|+ | ∂F
∂x2

(a, b)| ≤ ∆x
∆t .
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Maximum principle
A monotone, consistent, conservative scheme sa-
tisfies the maximum principle
min

{
Unj−1, U

n
j , U

n
j+1

}
≤ Un+1

j ≤
max

{
Unj−1, U

n
j , U

n
j+1

}
in particular, we have

mink(u0
k) ≤ unj ≤ maxk(u0

k) ∀n, j.

Entropy inequalities & Lp bounds
Def.: The Crandall-Majda numerical entropy flux:
Qn

j+1/2 = Q(un
j , u

n
j+1) = F (un

j ∨ k, u
n
j+1 ∨ k) − F (un

j ∧
k, un

j+1 ∧ k),
where a ∨ b = max(a, b), a ∧ b = min(a, b).
Lem. 4.10 (Crandall-Majda) Let un

j be an approxima-
te solution computed by a consistent and monotone three-
point scheme un+1

j = H(un
j−1, u

n
j , u

n
j+1). Then u satisfies

the discrete entropy inequality
|un+1

j − k| − |un
j − k|+ ∆t

∆x (Qn
j+1/2 −Q

n
j−1/2) ≤ 0 ∀n, j.

Total variation principle

Def. (Lipschitz flux): F (un
j ,un

j )−F (un,un
j+1)

un
j+1
−un

j
≤ | ∂F

∂b |

Lem. 4.13 (TV bounds): Any consistent monotone
three-point FV scheme un+1

j = un
j − ∆t

∆x (Fn
j+1/2−F

n
j−1/2)

is TVD under the CFL condition | ∂F
∂x1

(b, c)|+| ∂F
∂x2

(a, b)| ≤
∆x
∆t .
Total variation: TV (u) =

´
R|ux| dx=̂

∑
j

∣∣unj+1 − unj
∣∣

Rewrite (23) in increment form:
Un+1
j = Unj + Cnj+1/2(Unj+1 − Unj ) − Dn

j−1/2(Unj −
Unj−1)

Cnj+1/2 = ∆t
∆x

f(Un
j )−F (Un

j+1,U
n
j )

Un
j+1−U

n
j

Dn
j+1/2 = ∆t

∆x

f(Un
j+1)−F (Un

j+1,U
n
j )

Un
j+1−U

n
j

Harten’s Lemma
For a scheme in increment form, as long as
Cnj+1/2, D

n
j+1/2 ≥ 0 ∀j

Cnj+1/2 +Dn
j+1/2 ≤ 1 ∀j

then the scheme is TVD, i.e.
TV (Un+1) ≤ TV (Un)

Schemes which are monotone, conservative and
consistent satisfy the conditions for Harten’s lem-
ma.

Convergence result
Approximate solutions with a pw constant function:
U∆(x, t) = un

j for (x, t) ∈ [xj−1/2, xj+1/2)× [tn, tn+1).
Thm. 4.14 (Lax-Wendroff) Let un

j be approximate so-
lutions of ut + f(u)x = 0, computed by a conservative and
consistent FV scheme un+1

j = un
j − ∆t

∆x (Fn
j+1/2 − F

n
j−1/2)

with a differentiable (or Lipschitz) numerical flux fct F ,
where u0

j is given by u0
j = 1

∆x

´ xj+1/2
xj−1/2

u0(x) dx. Assume

that u0 ∈ L∞(R) and that the approsimating fcts u∆

• are uniformly bounden, i.e.
∥∥∥u∆

∥∥∥
L∞(R×R

≤ C for so-

me const. C > 0;
• converge in L1

loc(R× R) and almost ecerywhere to some
fct u.

Then u is a weak solution of ut + f(u)x = 0, with initial
data u0.

Boundary conditions
Solve PDE on domain [xL, xR] with mesh x1/2 = xL
and xN+1/2 = xR (N + 1 points). Introduce ghost
cells:
C0 = [xL −∆x, xL), CN+1 = [xR, xR + ∆x)
Dirichlet BC
Un0 = g(xL, t

n), UnN+1 = g(xR, t
n)

Periodic BC:
Un0 = UnN , U

n
N+1 = Un1

Non-reflecting Neumann BC: (Artificial BC)
Un0 = Un1 , U

n
N+1 = UnN

Miscellaneous

Finite differences

Forward diff.: u′(tn) ≈ [D+
t u]n = un+1−un

∆t

→ Rn = ∆t
2
u′′(tn) +O(∆t2)

Backward diff.: u′(tn) ≈ [D−t u]n = un−un−1

∆t

→ Rn = −∆t
2
u′′(tn) +O(∆t2)

Central diff.: u′(tn) ≈ [Dtu]n = u
n+ 1

2−un− 1
2

∆t

→ Rn = ∆t2

24
u′′′(tn) +O(∆t4)

Central diff. for 2nd derivative:
u′′(tn) ≈ [D−t D

+
t u]n = [D+

t D
−
t u]n =

[DtDtu]n = un+1−2un+un−1

∆t2

→ Rn = ∆t2

12
u(4)(tn) +O(∆t4)

Rn = [Dtu]n − u′(tn) ,
insert Taylor expansion of [Dtu]n

Crank-Nicolson (second-order convergence in ti-
me!) if given a PDE:
∂u
∂t

= F
(
u, x, t, ∂u

∂x
, ∂

2u
∂x2

)
and the space discretisation (e.g. upwind):
un+1
i −un

i

∆t
= Fni

(
u, x, t, ∂u

∂x
, ∂

2u
∂x2

)
(forward Euler)

un+1
i −un

i

∆t
= Fni

(
u, x, t, ∂u

∂x
, ∂

2u
∂x2

)
(backward Euler)

Then we the following holds:
un+1
i −un

i

∆t
= 1

2

[
Fn+1
i

(
u, x, t, ∂u

∂x
, ∂

2u
∂x2

)
+Fni

(
u, x, t, ∂u

∂x
, ∂

2u
∂x2

)]
Err(k)(∆x,∆t) = C1∆t2 + C2∆x
Example with linear transport equation (upwind

for space):
un+1
i −un

i

∆t
=

1
2

(
−a(xi)

un
i −u

n
i−1

∆x
+−a(xi)

un+1
i −un+1

i−1

∆x

)
Trick :
∂ũ
∂r

(ri+1/2, t
n) ≈

D̃+
x u

n
i+1/2+D̃−x u

n
i+1/2

2

= 1
2

(
un
i+1−u

n
i+1/2

∆r
2

+
un
i+1/2−u

n
i

∆r
2

)
=

un
i+1−u

n
i

∆r

Hilbert, Sobolev and L-Spaces

Ck
0((0, 1)) =

{
g | g ∈ Ck((0, 1) ∩C([0, 1])

s.t. g(0) = g(1) = 0
}

Hilbert:
A Hilbert space is a complete (every converging se-
quence of elements of V converges to an element of V)
vector space V with properties:
• Addition is commutative, associcative and has identity

and inverse elements
• Scalar multiplication is (associative), distributive and

has an identity element

with an inner product:
(·, ·) : V ×V→ R
v, w 7→ (v, w)
which has the properties:
• Symmetry: (v, w) = (w, v)
• Bilinearity: (αv + βu,w) = α(v, w) + β(u,w)
• (v, w) = 0⇔ v = 0 ∨ w = 0 and (v, w) ≥ 0∀v, w ∈ V

• Induces a norm: ‖v‖V =
√

(v, v)

Lebesgue: (Notion: L2(Ω)→ C0
pw(Ω))

L1(Ω)-norm: ‖x‖1 =
∑n
i=1 |xi|

L2
(
Ω
)

=
{
u : Ω→ R :

´
Ω

∣∣u(x)
∣∣2 dx <∞

}
(u, v)L2 =

´
Ω
u(x)v(x) dx

(‖v‖0 :=)‖v‖L2(Ω)
:=
(´

Ω
|v(x)|2 dx

)1/2

L∞
(
Ω
)

=
{
u : Ω→ R : supx∈Ω

∣∣u(x)
∣∣ <∞}

‖u‖L∞ = supx∈Ω

∣∣u(x)
∣∣

‖u‖∞ = maxx∈Ω

∣∣u(x)
∣∣

Lp
(
Ω
)

=
{
u : Ω→ R :

´
Ω

∣∣u(x)
∣∣p dx <∞

}
‖u‖Lp =

(´
Ω
up dx

) 1
p

(no inner product for p 6= 2)

Sobolev: (Notion: H1
0 (Ω)→ C1

pw(Ω))
H1
(
(0, 1)

)
=
{
u : Ω→ R : u′ ∈ L2

}
(u, v)H1 =

´
Ω
uv + u′v′ dx

‖u‖2H1(Ω) =‖u‖2L2(Ω) +‖u‖2H1
0 (Ω)

H1
0

(
Ω
)

=
{
u : Ω→ R : u′ ∈ L2, u(0) = u(1) = 0

}
(u, v)H1

0
=
´

Ω
u′(x)v′(x) dx

‖u‖H1
0 (Ω) =

(´
Ω
|u′|2 dx

)1/2

Hk
(
Ω
)

=
{
u : Ω→ R : u′, u′′, ..., u(k) ∈ L2

}
(u, v)Hk =

∑k
i=0

(
u(i), v(i)

)
L2

Other norms:
‖f‖∆x,∞ := sup1≤j≤N |fj | = sup1≤j≤N |f(xj)|
‖a‖C1 := supy∈R |a(y, t)|+ supy∈R |ax(y, t)|

H0 = L2

L2, Hk are Hilbert spaces
u ∈ H1

0 ⇒ u ∈ L2 (Poincaré)

Forms
Linear:
l : V→ R
v 7→ l(v)
l(αv + βw) = αl(v) + βl(w)

Bilinear:
a : V ×V→ R
v, w 7→ a(v, w)
a(αv + βu,w) = αa(v, w) + βa(u,w)
a(v, αu+ βw) = αa(v, w) + βa(v, w)
Need not be symmetric!
a(·, ·) symmetric⇔ a(v, w) = a(w, v)∀v, w ∈ V

Compact support / Smoothness
The support is:
supp(u) =

{
x ∈ Ω : u(x) 6= 0

}
A set is compact if it is both closed( [a, b], not
(a, b)) and bounded.
ϕ is continuously differentiable with compact sup-
port ≡ ϕ ∈ C1

c

Smoothness: f ∈ C∞, then f is smooth.

FEM basis functions
On the reference triangle k {a1, a2, a3} =
{(0, 0), (1, 0), (0, 1)}, the shape functions are:
M = {x0 = a, x1, ..., xN , xN+1 = b}.

1D (p = 1, S0
1(M)):


λ̂0(x) = 1− x− y
λ̂1(x) = x

λ̂2(x) = y

Gradients:


∇λ̂0(x) = (−1,−1)T

∇λ̂1(x) = (1, 0)T

∇λ̂2(x) = (0, 1)T

2D (p = 2, S0
2(M)):



ϕ̂0(x) = (2λ̂0(x)− 1)λ̂0(x)

ϕ̂1(x) = (2λ̂1(x)− 1)λ̂1(x)

ϕ̂2(x) = (2λ̂2(x)− 1)λ̂2(x)

ϕ̂3(x) = 4λ̂0(x)λ̂1(x)

ϕ̂4(x) = 4λ̂1(x)λ̂2(x)

ϕ̂5(x) = 4λ̂0(x)λ̂2(x)

∇ϕ̂0(x) = (4λ̂0(x)− 1)∇λ̂0(x)

∇ϕ̂1(x) = (4λ̂1(x)− 1)∇λ̂1(x)

∇ϕ̂2(x) = (4λ̂2(x)− 1)∇λ̂2(x)

∇ϕ̂3(x) = 4(∇λ̂0(x)λ̂1(x) + λ̂0(x)∇λ̂1(x))

∇ϕ̂4(x) = 4(∇λ̂1(x)λ̂2(x) + λ̂1(x)∇λ̂2(x))

∇ϕ̂5(x) = 4(∇λ̂0(x)λ̂2(x) + λ̂0(x)∇λ̂2(x))
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where we have the points: p1 = a1, p2 = a2, p3 =

a3, p4 = 1
2 (a1 + a2), p5 = 1

2 (a2 + a3), p5 = 1
2 (a1 + a3).

Lem. Dimension of spaces of polynomials
dim(Pp(Rd)) =

(d+p
p

)
, ∀p ∈ N0, d ∈ N,

(n
k

)
= n!

k!(n−k)!

Integration by parts
´ a
b
fg′ dx = [fg]ab −

´ a
b
f ′g dx

General product rule:
div(~fg) = ~f · grad(g) + g div(~f)
Divergence: div(F) =∇ · F

Summation by parts
N∑
j=1

vjD
+wj = vN+1wN+1 − v0w0 −

N∑
j=0

wjD
−vj

Identity :
D−x D

+
x u

n
j = 1

∆x
(D+

x u
n
j −D−x unj )

Symmetric case:∑N
j=1 w

n
j D
−
x D

+
x w

n+1
j

= −
∑N
j=0(D+

x w
n
j )(D+

x w
n+1
j )

Discrete Chain rule

wnjD
+
t w

n
j = 1

2
D+
t

(
(wnj )2

)
− ∆t

2

(
D+
t w

n
t

)2

wnjD
−
t w

n
j = 1

2
D−t

(
(wnj )2

)
− ∆t

2

(
D−t w

n
t

)2

Taylor

f(x± h) =
∑∞
j=0

(±h)j

j!
djf
dxj

Tf(x; a) =
∑∞
n=0

f(n)(a)
n!

(x− a)n

Cauchy-Schwarz inequality∣∣〈u,w〉∣∣2 ≤ 〈u, u〉 · 〈w,w〉∑N
j=1 ujwj ≤

(∑N
j=1 u

2
j

)1/2 (∑N
j=1 w

2
j

)1/2

´ b
a
u(τ)w(τ) dτ ≤

(´ b
a
u2(τ) dτ

)1/2 (´ b
a
w2(τ) dτ

)1/2

|a(u, v)| ≤ (a(u, v))
1/2(a(u, v))

1/2

Poincaré inequality
‖u‖L2 ≤‖u‖H1

0
⇔(´ ∣∣u(x)

∣∣2 dx
) 1

2 ≤
(´ ∣∣u′(x)

∣∣2 dx
) 1

2

Gronwall’s inequality
Let β(t) be continuous and u(t) differentiable on
[a, b] and assume
u′(t) ≤ β(t)u(t) ∀t ∈ [a, b].
Then:
u(t) ≤ u(a) exp

(´ t
a
β(τ) dτ

)
∀t ∈ [a, b]

Gauss/Green formula

For Ω ∈ Rd and j,F ∈ C1(Ω)d, v ∈ C1(Ω):
Gauss:

´
Ω
∇ · Fdx =

´
∂Ω

F · ndS
Green: −

´
Ω
∇·jv dx = −

´
∂Ω

j ·nv dS+
´

Ω
j ·∇v dx´

Ω
j · grad(v) dx = −

´
Ω
div(j)v dx +

´
∂Ω

j · nv dS
 

´
Ω
div(u)︸ ︷︷ ︸
′′v′′

div( v︸︷︷︸
′′j′′

) dx→ Green

Laplace operator

cartesian: ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

cylindrical: ∆ = 1
r
∂
∂r

+ 1
r2

∂2

∂ϕ2 + ∂
∂z

Quadrature

Composite trapezoidal quadrature´ b
a
f(x) dx ≈ f(a)h

2
+ h

∑N
i=1 f(xi) + f(b)h

2

Simple trapezoidal rule:´ b
a
f(x) dx ≈ (b− a)

[
f(b)+f(a)

2

]
Midpoint rule:´ b
a
f(x)dx ≈ (b− a)f(a+b

2
)

Fundamental theorem of integral
calculus

u(x) = C +
x́

0

u′(τ) dτ

u′(y) = C +
ý

0

u′′(z) dz

Fundamental lemma of variational
calculus

1D:
Let f ∈ C0

pw

(
[a, b]

)
,−∞ < a < b <∞ satisfies:

ˆ b

a

f(ξ)v(ξ) dξ = 0

∀v ∈ Ck
(
[a, b]

)
, v(a) = v(b) = 0

for some k ∈ N0.
Then: f ≡ 0.
In higher dimensions:
If f ∈ L2(Ω) satisfies:

ˆ
Ω

f(x)v(x) dx = 0, ∀v ∈ C∞0 (Ω)

Then: f ≡ 0.

Convex functions / Lipschitz

Convex functions: Let f ∈ C2(Ω).
Then f is convex ⇔ f ′′(x) ≥ 0 ∀x ∈ Ω.
Def. Lipschitz : Eine Funktion f : Ω ⊂ Rd → Rn heisst
Lipschitz stetig mit Lipschitzkonstante L, falls gilt∥∥f(x)− f(y)

∥∥ ≤ L ‖x− y‖ , ∀x, y ∈ Ω.
Satz Lipschitz stetig :
Eine differenzierbare Funktion f : Ω → R ist genau
dann Lipschitz-stetig, wenn ihre erste Ableitung auf Ω be-
schränkt ist.

Identities

• Elementary inequality: ab ≤ a2

2 + b2

2

• Simple algebraic relation: (a− b)2 ≤ 2(a2 + b2)

• b(a− b) = a2

2 −
b2

2 −
1
2 (a− b)2

Miscellaneous

Math Thm/Lem/Cor

A−1 =

[
a b
c d

]−1

= 1
det(A)

[
d −b
−c a

]
Multiplicative trace inequality :
∃C = C(Ω) > 0 :

‖u‖2L2(∂Ω) ≤ C‖u‖L2(Ω)‖u‖H1(Ω)

∀u ∈ H1(Ω)

Rem.:
‖u‖2L2(∂Ω) ≤ C‖u‖L2(Ω)‖u‖H1(Ω)

poincare
≤ C‖u‖H1

0 (Ω)‖u‖H1(Ω)

≤ C‖u‖H1(Ω)‖u‖H1(Ω)

⇔‖u‖L2(∂Ω) ≤ C‖u‖H1(Ω).

Example from lecture:
−µ∆u+ (β · ∇)u = f
⇒ −

´
Ω
µv∆u dx + β1

´
Ω
vux dx + β2

´
Ω
vuy dx =´

Ω
vf dx

•β1

´
Ω

(u
2

2
)x dx+ β2

´
Ω

(u
2

2
)y dx

= β1
2

´
Ω
u2
x dx+ β2

2

´
Ω
u2
ydx

= 1
2

´
Ω
β · ∇vdx

i.b.p.
= 1

2
[−
´

Ω
div(β)u dx+

´
Ω
β · n̂v dS]
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