
Variational Inference
The goal of this notebook is to implement a Variational Autoencoder (VAE).

The combination of a generative model from low dimensional latent variables  to high dimensional observations  (cf. Figure 2), combined with a recognition
model from  to  (cf. Figure 1) is what gives rise to the autoencoding structure. The approach we follow here was first proposed by Kingma et. al. [2],
although a similar approach was independently proposed by Rezende et. al. [3].
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Figure 1. Encoder (inference network ), provided by M. Deisenroth [1] Figure 2. Decoder (generator network ), provided by M. Deisenroth [1]�(�|�) �(�|�)

As a brief refresher, variational inference is a general approach to doing approximate inference for intractable posterior distributions. For instance, we might
have a probabilistic model with observations  and latent variables  and we are interested in computing the posterior distribution . For relatively
complex data, we might imagine the generative process from  to be some very complicated function we want to learn using a neural network 

. In order to compute the posterior distribution we need the normalizing factor  which is intractable due to the non-
linear mapping we have imposed with the neural network.
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Imports

In [1]:

Setting model and train (hyper)parameters

In [2]:

Load and visualize MNIST

The MNIST database is a database of handwritten digits that is commonly used for training and testing in the field of machine learning and computer vision.
The MNIST database contains 60,000 training images and 10,000 testing images. Each image is of size .28 × 28

In [3]:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm_notebook
 
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
 
from torchvision import datasets, transforms
from torchvision.utils import make_grid

batch_size = 100
epochs = 20
input_dim = 784
learning_rate = 5e-3
log_interval = 50
num_workers = 8
z_dim = 2
 
# cuda
cuda = False
device = torch.device("cuda" if cuda and torch.cuda.is_available() else "cpu")

def load_mnist_dl(batch_size, data_dir='/tmp/data'):
    transf = transforms.ToTensor()
    mnist_train = datasets.MNIST(data_dir, train=True, download=True, transform=transf)
    mnist_test = datasets.MNIST(data_dir, train=False, transform=transf)
    train_loader = DataLoader(mnist_train, batch_size=batch_size, shuffle='True', 
                              num_workers=num_workers, drop_last=True)
    test_loader = DataLoader(mnist_test, batch_size=batch_size, shuffle='True', 
                             num_workers=num_workers, drop_last=True)
    return train_loader, test_loader



In [4]:

In [5]:

Generative Process
Let us consider a dataset  i.i.d. consisting of N samples of some continuous or discrete variable x. We assume that the data are generated by
some random process, involving an unobserved continuous randmo variable . The process consists of two steps:

1. A value  is generated from some prior distribution .
2. A value  is generated from some conditional distribution .

We assumed that the prior  and likelihood  come from parametric families of distributions  and , and that their PDFs are
differentiable almost everywehree w.r.t. both  and . Unfortunatey, a lot of this process is hidden from our view, i.e. both the true parameters  and the
values of the latent variables  are unknown to us [2].

Let the prior over the latent variables be the centered isotropic multivariate Gaussian . Note taht in this case, the prior lacks parameters.
Since in this case we have a binarised MNIST, the observation likelihood is chosen to be Bernoulli  whose distribution
parameters are computed from  with a deep fully-connected neural network  to capture the complex generative process of high dimensional observations
such as images.

To summarise, for a binarised MNIST we have:

where  is the sigmoid function.
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Just to be clear, logits in mathematics is defined as a function  that maps probabilities , where  [4]. 

The logits have the following properties [4]:

Note, we used .
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Mean Field Approximation
In this type of variational inference, we assume the variational distribution over the latent variables factorises as

We refer to , the variational approximation for a single latent variable, as a "local variational approxi- mation"[5].
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Inference
The objective is to approximate the true posterior distribution  which in this case is intractable. While there is much freedom in the form of ,
we will assume that the true but intractable posterior takes on an approximate Gaussian form with an approximately diagonal covariance. In order to
approximate , we use the aforementioned mean field variational approximation. In the setting of the variational autoencoder, the variational posterior 

 is also parameterised by a neural network  which takes input  and outputs the mean  and variance  of the approximate posterior Normal
distribution:
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# get a data loader for each MNIST train and test set
train_loader, test_loader = load_mnist_dl(batch_size)

# get some random training images
# get the next batch from the train data loader
images, labels = next(iter(train_loader))
 
# show images from dataset
plt.figure(figsize=(5, 5))
img_grid = make_grid(images, nrow=10)
_ = plt.imshow(img_grid.numpy().transpose(1, 2, 0))
_ = plt.axis('off')    # suppresses axis and its labels
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ELBO (Evidence Lower Bound)

The true posterior has the following form:

where

This leaves us only with the marginal likelihood (evidence)  to optimise.
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Because directly optimising  is infeasible, we choose to optimise a lower bound  of it. The lower bound on the marginal likelihood of datapoint 
can be written as:
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Here you will find the detailed derivation:
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The KL term which acts as a regulariser can be integrated analytically in our case. 
For a general covariance matrix  and a fixed  we obtain the following analytical solution for the KL term:

Therefore the ELBO simplifies for a fixed  to:
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Here you will find the step by step analytical KL term solution for a general covariance matrix  and a fixed :Σ = (��� )
�
�,�=1 �, � ∈ {1, . . . ,�}
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The expected reconstruction error  requires estimation using Monte Carlo by sampling from :

According to the original paper [2],  can be set to 1 if the minibatch size  is large enough ( ).

The ELBO over one batch can be calculated with:
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Automatic differentiation

Pytorch uses automatic differentiation (autograd) to automate the computation of backward passes in neural networks. When using autograd, the forward
pass of your network will define a computational graph; nodes in the graph will be Tensors, and edges will be functions that produce output Tensors from
input Tensors. Backpropagating through this graph then allows you to easily compute gradients.

The reparametrisation trick
One of the key aspects of the Kingma et. al. [2] paper was the introduction of the reparametrisation trick. The problem we run into with training the VAE is that
we need the gradient of an expectation of the lower bound w.r.t. the parameters of the variational distribution. I.e.  in the equations above.
Without going into detail (see [7] for a great tutorial), we can avoid this problem for some distributions by reparameterising our random variable in terms of a
deterministic function and a random variable that is independent of the parameters we wish to take the gradient with respect to.

For a Gaussian distribution, we can get an unbias estimate of the Monte Carlo approximation of the expectations by taking a sample from a normal Gaussian 
 and the reparameterised sample is then given by
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You will find the reparametrise function in the VAE class below.
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In [6]:

KL divergence
The KL function returns the KL term between a parametrized Gaussian distribution  and .(�|�) =  (�(�,�), (�,�))�� �2 (�) =  (0, 1)��
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Objective function

class VAE(nn.Module):
    def __init__(self, input_dim=784, z_dim=2):
        super(VAE, self).__init__()
        # Use the nn.Module package to define the VAE model as a sequence of layers.
        # nn.Sequential s a Module which contains other Modules, 
        # and applies them in sequence to produce its output.
        # Each Linear module (nn.Linear) computes output from input using a
        # linear function, and holds internal Tensors for its weight and bias.
 
        # inference network q(z|x)
        self.encoder = nn.Sequential(
            nn.Linear(input_dim, 256),
            nn.ReLU(),
            nn.Linear(256, 128),
            nn.ReLU()
        )
        # mean and log(var)
        self.mu = nn.Linear(128, z_dim)
        self.logvar = nn.Linear(128, z_dim)
        
        # generator network p(x|z)
        self.decoder = nn.Sequential(
            nn.Linear(z_dim, 128),
            nn.ReLU(),
            nn.Linear(128, 256),
            nn.ReLU(),
            nn.Linear(256, input_dim),
            nn.Sigmoid()
        )
 
    def reparametrise(self, mu, logvar):
        """
        Use mu and log(var) to sample z ~ N(mu, var)
        Parameters
        ----------
        mu:     pytorch Tensor of shape (N, z_dim)
        logvar: pytorch Tensor of shape (N, z_dim)
        Returns
        -------
        z:      pytorch Tensor of shape (N, z_dim)
        """
        # torch.randn_like: Returns a tensor with the same size as input that is filled 
        # with random numbers from a normal distribution with mean 0 and variance 1
        e = torch.randn_like(mu)
        std = logvar.exp().sqrt()
        z = mu + e * std
        return z
 
    def forward(self, x):
        """
        Parameters
        -----------
        x:       pytorch Tensor of shape (N, input_dim)
        Returns
        -------
        recon_x: pytorch Tensor of shape like x
        mu:      pytorch Tensor of shape (N, z_dim)
        logvar:  pytorch Tensor of shape (N, z_dim)
        """
        h = self.encoder(x)
        mu = self.mu(h)
        logvar = self.logvar(h)
        z = self.reparametrise(mu, logvar)
        reconstructed_x = self.decoder(z)
        return reconstructed_x, mu, logvar

def KL(mu, logvar):
    """
    Computes the KL divergence between N(mu, exp(logvar)I) and N(0, I).
    Parameters
    ----------
    mu:     pytorch Tensor of shape (N, D)
    logvar: pytorch Tensor of shape (N, D)
    Returns: 
    --------
    kl:     pytorch Tensor of shape (N,)
    """
#     kl = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp())
    kl = 0.5 * (logvar.exp() + mu.pow(2) - logvar - 1)
    return kl.sum(1)



By changing our objective from maximising the ELBO to the equivalent objective of minimising the negative ELBO, we can use gradient descent methods to
optimise variational parameters. The loss_func implements the negative ELBO for .� = 1
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Init model
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Little demostration on how torch.bernoulli works
torch.bernoulli(data)  will return with probability  1 and zero otherwise.�
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VAE( 
  (encoder): Sequential( 
    (0): Linear(in_features=784, out_features=256, bias=True) 
    (1): ReLU() 
    (2): Linear(in_features=256, out_features=128, bias=True) 
    (3): ReLU() 
  ) 
  (mu): Linear(in_features=128, out_features=2, bias=True) 
  (logvar): Linear(in_features=128, out_features=2, bias=True) 
  (decoder): Sequential( 
    (0): Linear(in_features=2, out_features=128, bias=True) 
    (1): ReLU() 
    (2): Linear(in_features=128, out_features=256, bias=True) 
    (3): ReLU() 
    (4): Linear(in_features=256, out_features=784, bias=True) 
    (5): Sigmoid() 
  ) 
) 

def loss_func(recon_x, x, mu, logvar):
    """
    Parameters
    ----------
    mu:      pytorch Tensor of shape (N, z_dim)
    logvar:  pytorch Tensor of shape (N, z_dim)
    recon_x: pytorch Tensor of shape (N, input_dim)
             reconstruction of x
    x: pytorch Tensor of shape (N, input_dim)
    Returns:
    L:       negative ELBO 
    -------
    """
    E_log_pxz = F.binary_cross_entropy(recon_x, x, reduction='none').sum(1)
    kl = KL(mu, logvar)
    L = (E_log_pxz + kl).mean()   
    return L

model = VAE(input_dim=input_dim, z_dim=z_dim).to(device)

print(model)

x, _ = next(iter(train_loader))

plt.figure()
plt.imshow(x[0][0], cmap='gray', interpolation='none')
_ = plt.axis('off')    # suppresses axis and its labels
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Training and evaluation

In [14]:

Plot ELBO History

 

[Epoch 20/20] train: 152.1370 test: 151.3254 100% 20/20 [02:26<00:00, 7.40s/it]

# Note, if you re-run this cell a couple of times you see that the binarisation is dynamic, i.e.
# the image still displays the same label as above but varies it a bit in each run
plt.figure()
new_x = torch.bernoulli(x)
plt.imshow(new_x[0][0], cmap='gray', interpolation='none')
_ = plt.axis('off')    # suppresses axis and its labels

# this should not take more than 5 min to train for 20 epochs
 
no_train_batches = len(train_loader)
no_train_samples = len(train_loader.dataset)
no_test_samples = len(test_loader.dataset)
 
loss_train_history = []
loss_test_history = []
ebar = tqdm_notebook(range(epochs), desc='[Epoch {}]'.format(1))
for epoch in ebar:
    nbar = tqdm_notebook(enumerate(train_loader),
                         total=no_train_batches,
                         desc='Training...',
                         leave=False)
    loss_train = 0.
    model.train()
    for i, (data, labels) in nbar:
        # dynamically binarise data, cf. demo above
        data = torch.bernoulli(data).to(device)
        data = data.view(data.shape[0], -1)
 
        # calculate loss using ELBO
        recon_x, mu, logvar = model(data)
        loss = loss_func(recon_x, data, mu, logvar)
        
        # Zero the gradients before running the backward pass.
        model.zero_grad()
 
        # Backward pass: compute gradient of the loss with respect to all the learnable
        # parameters of the model. Internally, the parameters of each Module are stored
        # in Tensors with requires_grad=True, so this call will compute gradients for
        # all learnable parameters in the model.
        loss.backward()
 
        # Update the weights using gradient descent.
        # Each parameter is a Tensor, so
        # we can access its gradients like we did before.
        with torch.no_grad():
            for param in model.parameters():
                param -= learning_rate * param.grad
 
        # detach(): Returns a new Tensor, detached from the current graph. This is useful
        #           if the result will never require its gradient.
        loss_train += loss.detach().item() * batch_size / no_train_samples
    loss_train_history.append(loss_train)
    
    # evaluate on test dataset
    model.eval()
    loss_test = 0.
    with torch.no_grad():
        for i, (data, labels) in enumerate(test_loader):
            data = torch.bernoulli(data).to(device)
            data = data.view(data.shape[0], -1)
            recon_x, mu, logvar = model(data)
            loss_test += loss_func(recon_x, data, mu, logvar).item() * batch_size / no_test_samples
    loss_test_history.append(loss_test)
    ebar.set_description('[Epoch {}/{}] train: {:.4f} test: {:.4f}'.format(
        epoch + 1, epochs, loss_train, loss_test))



In [15]:

Plot Input vs. Reconstruction

In [16]:

Plot Model Sample

In [20]:

Plot Interpolate Through Latent

# ELBO history
plt.figure()
_ = plt.plot(range(epochs), np.asarray(loss_train_history) * -1, label='Train')
_ = plt.plot(range(epochs), np.asarray(loss_test_history) * -1, label='Test')
_ = plt.ylabel('ELBO')
_ = plt.legend()

# plot reconstruction
n = min(recon_x.shape[0], 16)
recon_data = torch.cat([data[:n].view(n, 1, 28, 28),
                        recon_x[:n].view(n, 1, 28, 28)], 0)
grid_data = make_grid(recon_data, nrow=n)
plt.figure(figsize=(40, 40))
_ = plt.imshow(grid_data.numpy().transpose(1, 2, 0), cmap='gray')
_ = plt.xticks([])
_ = plt.yticks([14, 42], ['Data', 'Reconstruction'])

# sample from model
z = torch.randn(64, z_dim).to(device)
with torch.no_grad():
    recon_x = model.decoder(z)
 
plt.figure(figsize=(5,5))
_ = plt.imshow(make_grid(recon_x.view(64, 1, 28, 28)).cpu().numpy().transpose(1, 2, 0))
_ = plt.axis('off')    # suppresses axis and its labels



In [21]:

Plot 2D Embedding (Latent Space)

# interpolate through latent if z_dim = 2
if z_dim == 2:
    plt.figure(figsize=(10, 10))
    x = y = torch.linspace(-4, 4, steps=20)
    xv, yv = torch.meshgrid((x, y))
    z = torch.cat((xv.flatten().unsqueeze(1), yv.flatten().unsqueeze(1)), 1)
    with torch.no_grad():
        recon_x = model.decoder(z)
    _ = plt.imshow(make_grid(recon_x.view(-1, 1, 28, 28), nrow=20).cpu().numpy().transpose(1, 2, 0))
    _ = plt.axis('off')    # suppresses axis and its labels



In [23]:

Credits
This notebook is based on the variational inference tutorial from CO493 Probabilistic Inference (spring term 2019) taught by Marc Deisenroth.

References
[1] Imperial College London, CO493 Probabilistic Inference (spring term 2019), Marc Deisenroth, Variational Inference 
[2] Diederik P. Kingma, Max Welling. Auto-Encoding Variational Bayes. 2014. https://arxiv.org/pdf/1312.6114v10.pdf (https://arxiv.org/pdf/1312.6114v10.pdf) 
[3] Danilo J. Rezende, Shakir Mohamed, Daan Wierstra. Stochastic Backpropagation and Approximate Inference in Deep Generative Models. 2014.
https://arxiv.org/pdf/1401.4082.pdf (https://arxiv.org/pdf/1401.4082.pdf) 
[4] What is the meaning of the word logits in TensorFlow? Accessed: 27/04/2019. https://stackoverflow.com/questions/41455101/what-is-the-meaning-of-the-
word-logits-in-tensorflow (https://stackoverflow.com/questions/41455101/what-is-the-meaning-of-the-word-logits-in-tensorflow) 
[5] Willie Neiswanger. Lecture 13 : Variational Inference: Mean Field Approximation. Accessed: 27/04/2019. https://www.cs.cmu.edu/~epxing/Class/10708-
17/notes-17/10708-scribe-lecture13.pdf (https://www.cs.cmu.edu/~epxing/Class/10708-17/notes-17/10708-scribe-lecture13.pdf) 
[6] Imperial College London, CO493 Probabilistic Inference (spring term 2019), Marc Deisenroth, Sampling 
[7] Machine Learning Trick of the Day (4): Reparameterisation Tricks. Accessed: 29/04/2019. http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-
day-4-reparameterisation-tricks/ (http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/)

### place legend outside
### https://stackoverflow.com/questions/4700614/how-to-put-the-legend-out-of-the-plot
### Accessed: 29/04/2019
 
z_test = torch.Tensor(no_test_samples, z_dim)
labels_test = []
 
model.eval()
with torch.no_grad():
    for i, (data, labels) in enumerate(test_loader):
        data = torch.bernoulli(data).to(device)
        data = data.view(data.shape[0], -1)
        recon_x, mu, logvar = model(data)
        z_test[i * batch_size:i * batch_size + data.shape[0], :] = model.reparametrise(mu, logvar)
        labels_test.append(labels)
 
labels_test = torch.cat(labels_test).numpy()
z_test = z_test.numpy()
 
# plot latent space if z_dim = 2
if z_dim == 2:
    fig = plt.figure()
    ax = plt.subplot(111)
    plt.title('2D Embedding')
    
    for y in range(10):
        z_test_y = z_test[labels_test == y]
        ax.scatter(z_test_y[:, 0], z_test_y[:, 1], label='label{}'.format(y))
    
    # Shrink current axis by 20%
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
    # Put a legend to the right of the current axis
    ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
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