In [1]:
In [2]:
In [3]:

Variational Inference
The goal of this notebook is to implement a Variational Autoencoder (VAE).

The combination of a generative model from low dimensional latent variables z to high dimensional observations x (cf. Figure 2), combined with a recognition
model from x to z (cf. Figure 1) is what gives rise to the autoencoding structure. The approach we follow here was first proposed by Kingma et. al. [2],
although a similar approach was independently proposed by Rezende et. al. [3].

Figure 1. Encoder (inference network ¢(z|x)), provided by M. Deisenroth [1] Figure 2. Decoder (generator network p(x|z)), provided by M. Deisenroth [1]

H j

X Ho Lo Py By

Lz 2

As a brief refresher, variational inference is a general approach to doing approximate inference for intractable posterior distributions. For instance, we might
have a probabilistic model with observations x and latent variables z and we are interested in computing the posterior distribution p(z|x). For relatively
complex data, we might imagine the generative process from z — x to be some very complicated function we want to learn using a neural network

x = fy(2). In order to compute the posterior distribution we need the normalizing factor p(x) = /p(x|f9(z))p(z)dz which is intractable due to the non-
linear mapping we have imposed with the neural network.

Imports

$matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from tgdm import tgdm notebook

import torch

from torch import nn

import torch.nn.functional as F

from torch.utils.data import DatalLoader

from torchvision import datasets, transforms
from torchvision.utils import make_grid

Setting model and train (hyper)parameters

batch_size = 100
epochs = 20
input_dim = 784
learning_rate = 5e-3
log_interval = 50
num_workers = 8
z_dim = 2

cuda
cuda = False
device = torch.device('"cuda" if cuda and torch.cuda.is_available() else "cpu")

Load and visualize MNIST

The MNIST database is a database of handwritten digits that is commonly used for training and testing in the field of machine learning and computer vision.
The MNIST database contains 60,000 training images and 10,000 testing images. Each image is of size 28 X 28.

def load mnist_dl(batch_size, data_dir='/tmp/data'):

transf = transforms.ToTensor()

mnist_train = datasets.MNIST(data_dir, train=True, download=True, transform=transf)

mnist_test = datasets.MNIST(data_dir, train=False, transform=transf)

train_loader = DataLoader(mnist_train, batch_size=batch_size, shuffle='True',

num_workers=num _workers, drop_last=True)

test_loader = DataLoader(mnist_test, batch_size=batch_size, shuffle='True',
num_workers=num_ workers, drop_last=True)

return train_loader, test_loader

In [4]:

[51:

get a data loader for each MNIST train and test set
train_loader, test_loader = load mnist_dl(batch_size)

get some random training images
get the next batch from the train data loader
images, labels = next(iter(train_loader))

show images from dataset

plt.figure(figsize=(5, 5))

img _grid = make_grid(images, nrow=10)

_ = plt.imshow(img_grid.numpy().transpose(1l, 2, 0))

_ = plt.axis('off") # suppresses axis and its labels

|,“'_“:-6-—O -\'jl

PXWNPLWYROD —
L = BT B O T A
PO L2Q v RPW
AN —D AR
O 2QnNn+h AN+
W WO D ~J]
NS PD R W

~RAN¥PN®
VAL LSOO —N
WL eoWewNO

Generative Process

Let us consider a dataset X = {x; }fil i.i.d. consisting of N samples of some continuous or discrete variable x. We assume that the data are generated by
some random process, involving an unobserved continuous randmo variable z. The process consists of two steps:

1. A value z; is generated from some prior distribution pg+ (z).
2. A value x; is generated from some conditional distribution pg: (x| z).

We assumed that the prior pg+ (z) and likelihood py+ (x| z) come from parametric families of distributions py(z) and py(x|z), and that their PDFs are
differentiable almost everywehree w.r.t. both 6 and z. Unfortunatey, a lot of this process is hidden from our view, i.e. both the true parameters 8* and the
values of the latent variables z; are unknown to us [2].

Let the prior over the latent variables be the centered isotropic multivariate Gaussian pg(z) = N'(z ; 0,). Note taht in this case, the prior lacks parameters.
Since in this case we have a binarised MNIST, the observation likelihood is chosen to be Bernoulli p,(x|z) = Bernoulli(x; 6(x;0,i;) Whose distribution
parameters are computed from z with a deep fully-connected neural network f, to capture the complex generative process of high dimensional observations
such as images.

To summarise, for a binarised MNIST we have:
z~N(z;0,1)
Xlogits = So(2)
x ~ Bernoulli(x; 6(xigits)

where o(x) = Tlrx is the sigmoid function.

Just to be clear, logits in mathematics is defined as a function L that maps probabilities [0, 1] = (—o0, o), where p — L(p) := log(%p) [4].

The logits have the following properties [4]:

e p<05 = X <0
e p=0.5 e Xlogit = 0
« p>05 54 Xlogit > 0

Note, we used xjog; := L(p).

Mean Field Approximation

In this type of variational inference, we assume the variational distribution over the latent variables factorises as
m
4G z0) = [4tz
J=1

We refer to q(zj), the variational approximation for a single latent variable, as a "local variational approxi- mation"[5].

Inference

The objective is to approximate the true posterior distribution p,(z|x;) which in this case is intractable. While there is much freedom in the form of 4¢(z|-’fi)v
we will assume that the true but intractable posterior takes on an approximate Gaussian form with an approximately diagonal covariance. In order to
approximate py(z|x;), we use the aforementioned mean field variational approximation. In the setting of the variational autoencoder, the variational posterior
q¢(z|x,-) is also parameterised by a neural network [, which takes input x; and outputs the mean p; and variance o'l.2 of the approximate posterior Normal
distribution:

H(xis @), 10g 67 (a3) = fy(x)

q(2lx) = N(z; p(as d), 6° (i3 9D 0]
ELBO (Evidence Lower Bound)
The true posterior has the following form:
pol2lx) = Po(z x;)
' Po(x;)
_ Po(axi)pe(2)
Po(x;)

where
po(2) = N(z:0,T)

Ppolx12) = Bernoulli(x; 6(xogs))-

This leaves us only with the marginal likelihood (evidence) py(x;) to optimise.

Because directly optimising log(py(x;)) is infeasible, we choose to optimise a lower bound L of it. The lower bound on the marginal likelihood of datapoint x;
can be written as:
log(po(x)) = L(xi30,$) := E, (1, [log po(xi, 2) — log gy (2 x)]

=Eq (dn) [log po(xi|2)] — Di1 (q4(zlx) || p(2))

Here you will find the detailed derivation:

log(py(:)) =10g< / po(x;IZ)po(Z)dZ>

imporlancc,:mmpling [6]10g </ pg(x,- |Z) pB(Z) q¢(z|x,-)dz>
q¢(z|x;)

Po(2)
=] E ;
°g< a(clx) [/ polil?) q¢<z|x,->]>

Jensen's inequality Do (z)
> E, .. |lo / (x12)
4y (2lx) [g(Po(il ay(2lx)

q¢(z|x;)
=E, (i) [102(po(xi12)] = E, [1"g<p67>]

=E,, 1) [102(po(x:12)] = Dk1(a4(zl2) || po(2)

The KL term which acts as a regulariser can be integrated analytically in our case.
For a general covariance matrix X = (O',-j)iszl and afixed i, j € {1,..., N} we obtain the following analytical solution for the KL term:

GIED)
Di1(44(zi1%) || Po(2)) = Eg 2 1) [“’g(ie(—;))]

= Ey,z)1xy [108(a9(z1x0)] = Egy 1 [log(po(z))]

= _l — l 2) _ l — _l _ l 2 2

= 210g(27‘[) 2log(a,.j) 5 < 210g(27r) 5 (of + ﬂij)>
1

1 1
= (o +) = 5log(e}) - 5

Therefore the ELBO simplifies for a fixed i, j € {1,..., N} to:
102(po(x1)) = Eqy(z,1x) [10g(poCxil2))] = Dir(ag(z1%:) || po(z;)

1 1 1
= Eq,z 1) [l0g(po(xil2))] - <§<6i2j +) ~ EIOg(gizj) - 5)

()

N =

1 1
= Eg 1y [log(po(xilz))] - 5(“?,- +uh) + glog(aé) +

Here you will find the step by step analytical KL term solution for a general covariance matrix X = (ai_/)le and afixedi,j € {1,...,N}:

q¢(z;x;)
Dir(qg(z;1x) || po(2))) = Eqgz v, 10g< dpg(z) >]

Eq,z) [102(a4(21x0)] = Eg 2,15, [log(pa(z)]

1 1
Eq, x| Jog| ——— XP<—2(ZJ - ﬂi1)2> = Eg iz [log(p(z)))]
A /27w‘ 2"[/

1
qd,(zjm[210:‘:’(2”) 7103() ——(z; - ”1/)] %(~,IV)[IOg(P0(Zj>)]

26 2

5 — (2 -2z + /4,2,)] = Eg iz [log(po(z)))]

:E%(Z,,x,)[5 log(27) — 710g() 2
ij

1 1 1
_EIOg(zﬂ) - ElOg(G?j) - ;iszq(,,(ilxi) [=2z + ”:,] Eq, 1% [IOg(pH(ZI))]
1 1
5102(‘7,‘2/) - ?(E%(ZJIX) [] ZNIJE%(Z/IX’) [Zj] + /”u) - Eq¢,<z/\x,> [IOg(PO(Zj))]

i

w1 1 1
—Elog(zﬂ) - 51‘)g(‘7"21)) (V'drq‘,,uﬂx»(zj) + (Eqd,(z,lx,)lzj])z = 204y 1) 12] + M,zj) = Eq,z vy [log(pe(z)))]
i

1
= - Elog(Zﬂ) -

i 1 1 1
£ —log@n) — Slog(02) = = (07 + 4 = 2y - iy + 13) = Eqyany [log(po(z)]

2 2 20}, ’
1 1, 1,
= —Elog(Zﬂ) — 5103(";/) - ; o — E%(MX,) [log(pg(zj))]
ij
1 1 1
=~ log@m) — Jlog(o}) = - = Eyc51x) [l02(po(z))]
1 1 1 1 1
== 1o8Cm) = Jlog(0}) = 5 ~ Ey) [“’g(mex"(‘zzi))]

1 1 1 1 1
= —Elog(Zn) - Elog(afj) 5T Eqz1x) [——log(2n) - Ez,zj]
= —Liog2m - Lo (c2) L [22]
=7 g) g\oj; B D) 4 %(wln)

1 1 o1)
= —Elog(Zn) — 51"g(‘7i1) D) + Elog(er) + EE"’(Z’“’) [z,.j]
w 1 11 1 2
= —Elog(Zn) - 7]0g(ai2j) -5 + 510g(27z) + E(Var%u,lx,)(zj) + (E%(Z_/‘x,)[zj]))
@ 1 | 5 1 1 1, , 2
= = log2m) - Elog(gu) -5+ 5log@m + E(UU +u2)

1 1 1

= (o + uy) = Jlog(af) -

() We used the following identity:
- 2 2
Varg, 1x)(2)) = Eq,z1xp [z/] - (qu,(zjlx,)[zj])

2 2
= Eqyeix 2] = Varg, i) () + (Egy 2150 [21)

The expected reconstruction error [Eq¢ (z1x) [10g pg(x|2)] requires estimation using Monte Carlo by sampling from q,4(z;|x;):

1
Eq, v [log(po(xi|2))] = zZlog po (xilzf))s 2~ ap(zlx)

According to the original paper [2], L can be set to 1 if the minibatch size M is large enough (M > 100).

The ELBO over one batch can be calculated with:
L

1o (!
LX:0.0) =20 X <f 2 log(po (xilzf)) = Drw(agzlx) | p(z,-»)

=1

© L3 (L3 oe(on (51:6)) - (03 +2) + rox(e3) + 1
M szl l 207 ' 2

Automatic differentiation

Pytorch uses automatic differentiation (autograd) to automate the computation of backward passes in neural networks. When using autograd, the forward
pass of your network will define a computational graph; nodes in the graph will be Tensors, and edges will be functions that produce output Tensors from
input Tensors. Backpropagating through this graph then allows you to easily compute gradients.

The reparametrisation trick

One of the key aspects of the Kingma et. al. [2] paper was the introduction of the reparametrisation trick. The problem we run into with training the VAE is that
we need the gradient of an expectation of the lower bound w.r.t. the parameters of the variational distribution. I.e. Vd)ﬁ(xi; 6, ¢) in the equations above.
Without going into detail (see [7] for a great tutorial), we can avoid this problem for some distributions by reparameterising our random variable in terms of a
deterministic function and a random variable that is independent of the parameters we wish to take the gradient with respect to.

For a Gaussian distribution, we can get an unbias estimate of the Monte Carlo approximation of the expectations by taking a sample from a normal Gaussian
€ ~ N'(0, I') and the reparameterised sample is then given by

In [6]:

!
Zi

You will find the reparametrise function in the VAE class below.

class VAE(nn.Module):

def _ init_ (self, input_dim=784, z_dim=2):
super (VAE, self)._ init_ ()
Use the nn.Module package to define the
nn.Sequential s a Module which contains
and applies them in sequence to produce
Each Linear module (nn.Linear) computes

= pu(x; @) + o(x;9) x €

VAE model as a sequence of layers.
other Modules,

its output.

output from input using a

linear function, and holds internal Tensors for its weight and bias.

inference network q(z|[x)

self.encoder = nn.Sequential(
nn.Linear (input_dim, 256),
nn.ReLU(),
nn.Linear (256,
nn.ReLU()

128),

)

mean and log(var)

self.mu = nn.Linear (128, z_dim)
self.logvar = nn.Linear (128, z_dim)

generator network p(x/z)
self.decoder = nn.Sequential(
nn.Linear(z_dim, 128),

nn.ReLU(),

nn.Linear (128, 256),
nn.ReLU(),

nn.Linear (256, input_dim),
nn.Sigmoid()

)

def reparametrise(self, mu,

logvar):

Use mu and log(var) to sample z ~ N(mu, var)

Parameters

mu: pytorch Tensor of shape (N, z_dim)

logvar: pytorch Tensor of shape (N, z_dim)

Returns

z: pytorch Tensor of shape (N, z_dim)

torch.randn like: Returns a tensor with the same size as input that is filled
with random numbers from a normal distribution with mean 0 and variance 1
e = torch.randn_like(mu)

std = logvar.exp().sqrt()

z =mu + e * std

return z

def forward(self, x):

Parameters

X: pytorch Tensor of shape (N, input_dim)

recon_x: pytorch Tensor of shape like x

mu: pytorch Tensor of shape (N, z_dim)
logvar: pytorch Tensor of shape (N, z_dim)
h = self.encoder(x)

mu = self.mu(h)

logvar = self.logvar(h)

z = self.reparametrise(mu, logvar)
reconstructed_x = self.decoder(z)

return reconstructed_x, mu, logvar

KL divergence

The KL function returns the KL term between a parametrized Gaussian distribution q¢(z|x) = N(u(x,), 62(x, $)) and py(x) = N(0, 1).

In [7]: def KL(mu, logvar):

Computes the KL divergence between N(mu, exp(logvar)I) and N(0, I).
Parameters

mu: pytorch Tensor of shape (N, D)

logvar: pytorch Tensor of shape (N, D)

Returns:

kl: pytorch Tensor of shape (N,)
k1l = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp())

kl = 0.5 * (logvar.exp() + mu.pow(2) - logvar - 1)
return kl.sum(1)

Objective function

By changing our objective from maximising the ELBO to the equivalent objective of minimising the negative ELBO, we can use gradient descent methods to
optimise variational parameters. The loss_func implements the negative ELBO for L = 1.

M L
1 1
LX:0,¢) = — ' — D —log(ps (xilz{)) + Dir(gg(zilxi) Il p(z)
M i=1 L’K:l
In [8]: def loss_func(recon_x, x, mu, logvar):
Parameters
mu: pytorch Tensor of shape (N, z_dim)

logvar: pytorch Tensor of shape (N, z_dim)

recon_x: pytorch Tensor of shape (N, input dim)
reconstruction of x

x: pytorch Tensor of shape (N, input_dim)

Returns:

L: negative ELBO

E_log pxz = F.binary cross_entropy(recon_x, X, reduction='none').sum(1l)
k1l = KL(mu, logvar)

L = (E_log pxz + kl).mean()

return L

Init model
In [9]: model = VAE(input_ dim=input_dim, z_dim=z_dim).to(device)

In [10]: print(model)

VAE (
(encoder): Sequential(
(0): Linear(in_features=784, out_features=256, bias=True)
(l): ReLU()
(2): Linear(in_features=256, out_features=128, bias=True)
(3): RelLU()
)
(mu): Linear(in_features=128, out_features=2, bias=True)
(logvar): Linear(in_features=128, out_features=2, bias=True)
(decoder): Sequential(
(0): Linear(in_features=2, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=256, bias=True)
(3): ReLU()
(4): Linear(in_features=256, out_features=784, bias=True)
(5): Sigmoid()

Little demostration on how torch.bernoulli works

torch.bernoulli(data) will return with probability p 1 and zero otherwise.
In [11]: x, _ = next(iter(train_loader))

In [12]: plt.figure()
plt.imshow(x[0][0], cmap='gray', interpolation='none')
_ = plt.axis('off") # suppresses axis and its labels

In [13]: # Note, if you re-run this cell a couple of times you see that the binarisation is dynamic, i.e.
the image still displays the same label as above but varies it a bit in each run
plt.figure()
new_x = torch.bernoulli(x)
plt.imshow(new_x[0][0], cmap='gray', interpolation='none')
_ = plt.axis('off") # suppresses axis and its labels

Training and evaluation

In [14]: # this should not take more than 5 min to train for 20 epochs

no_train batches = len(train_loader)
no_train_samples = len(train_loader.dataset)
no_test_samples = len(test_loader.dataset)

loss_train_history = []
loss_test_history = []
ebar = tgdm_notebook(range(epochs), desc='[Epoch {}]'.format(1l))
for epoch in ebar:
nbar = tgdm_notebook(enumerate(train_loader),
total=no_train_batches,
desc='Training...',
leave=False)
loss_train = 0.
model.train()
for i, (data, labels) in nbar:
dynamically binarise data, cf. demo above
data = torch.bernoulli(data).to(device)
data = data.view(data.shape[0], -1)

calculate loss using ELBO
recon_x, mu, logvar = model(data)
loss = loss_func(recon_x, data, mu, logvar)

Zero the gradients before running the backward pass.
model.zero_grad()

Backward pass: compute gradient of the loss with respect to all the learnable
parameters of the model. Internally, the parameters of each Module are stored
in Tensors with requires grad=True, so this call will compute gradients for
all learnable parameters in the model.

loss.backward()

Update the weights using gradient descent.
Each parameter is a Tensor, so
we can access its gradients like we did before.
with torch.no_grad():
for param in model.parameters():
param -= learning rate * param.grad

detach(): Returns a new Tensor, detached from the current graph. This is useful

if the result will never require its gradient.

loss_train += loss.detach().item() * batch_size / no_train samples
loss_train_history.append(loss_train)

evaluate on test dataset
model.eval()
loss_test = 0.
with torch.no_grad():
for i, (data, labels) in enumerate(test_ loader):
data = torch.bernoulli(data).to(device)
data = data.view(data.shape[0], -1)
recon_x, mu, logvar = model(data)
loss_test += loss_func(recon_x, data, mu, logvar).item() * batch_size / no_test_samples
loss_test_history.append(loss_test)
ebar.set_description('[Epoch {}/{}] train: {:.4f} test: {:.4f}'.format(
epoch + 1, epochs, loss_train, loss_test))

[Epoch 20/20] train: 152.1370 test: 151.3254 100% 20/20 [02:26<00:00, 7.40s/it]

Plot ELBO History

In [15]: # ELBO history

plt.figure()
plt.plot(range(epochs), np.asarray(loss_train_history) * -1, label='Train')
plt.plot(range(epochs), np.asarray(loss_test_history) * -1, label='Test')
plt.ylabel('ELBO')
plt.legend()

-150 -
Train —

Test /’
-160 -

=
=170 /

=
-180

ELBO

-190

—200

Plot Input vs. Reconstruction

In [16]: # plot reconstruction
n = min(recon_x.shape[0], 16)
recon_data = torch.cat([data[:n].view(n, 1, 28, 28),
recon_x[:n].view(n, 1, 28, 28)], 0)
grid_data = make_grid(recon_data, nrow=n)
plt.figure(figsize=(40, 40))
= plt.imshow(grid_data.numpy().transpose(l, 2, 0), cmap='gray')
plt.xticks([])
plt.yticks([14, 42], ['Data', 'Reconstruction'])

Plot Model Sample

In [20]: # sample from model
z = torch.randn(64, z_dim).to(device)
with torch.no_grad():
recon_x = model.decoder(z)

plt.figure(figsize=(5,5))
plt.imshow(make_grid(recon_x.view(64, 1, 28, 28)).cpu().numpy().transpose(l, 2, 0))
plt.axis('off") # suppresses axis and its labels

LNV W
=L

g g & & W LW w

.

LD - WD b
Wilpg <0 O WUy ~a Uy
D W~

O Q g
-

»
L

Plot Interpolate Through Latent

In [21]: # interpolate through latent if z dim = 2
if z_dim == 2:
plt.figure(figsize=(10, 10))
X = y = torch.linspace(-4, 4, steps=20)
Xv, yv = torch.meshgrid((x, y))
z = torch.cat((xv.flatten().unsqueeze(l), yv.flatten().unsqueeze(l)), 1)
with torch.no_grad():
recon_x = model.decoder(z)
_ = plt.imshow(make_grid(recon_x.view(-1, 1, 28, 28), nrow=20).cpu().numpy().transpose(l, 2, 0))
_ = plt.axis('off") # suppresses axis and its labels

. |
-

TN
T
T9944
€] ¢ ¢ ¢ O}
qygogogu
guuouo

SJ3JdJ4d

i i B B B BN |

s bWPWWs OO III

AT YT T T EE R

7
7
7
7
7
/
7'.
|
|
I
f
!
/
/
/
/
/
/
/
/

GO0 OCO0OOOOERPEFLL LD

R N N . e N N NN |
R N R . e SIS N NN |
SOONONL NN N TN M e e e 0 SO NN NI NI NI NN
NN NN NN M B0 S0 NN NN NI NI NN
AN R L L L LELEE R B R RNENENEN]
Ao DEPPEPY OO0
VLHIGSGAOOOCO O

T T e U R e
TP
TP D
LU0 OOCOO
A/ O00OC00
VBHHBOO0O0O00QC0O0
BVOOOO0O00QO00

t\ GG &

Plot 2D Embedding (Latent Space)

In [23]:

place legend outside
https://stackoverflow.com/questions/4700614/how-to-put-the-legend-out-of-the-plot
Accessed: 29/04/2019

z_test = torch.Tensor(no_test_samples, z_dim)
labels_test = []

model.eval()
with torch.no_grad():
for i, (data, labels) in enumerate(test_loader):
data = torch.bernoulli(data).to(device)
data = data.view(data.shape[0], -1)
recon_x, mu, logvar = model(data)
z_test[i * batch_size:i * batch_size + data.shape[0], :] = model.reparametrise(mu, logvar)
labels_test.append(labels)

labels_test = torch.cat(labels_test).numpy()
z_test = z_test.numpy()

plot latent space if z dim = 2
if z_dim == 2:
fig = plt.figure()
ax = plt.subplot(111)
plt.title('2D Embedding')

for y in range(10):
z_test_y = z_test[labels_test == y]
ax.scatter(z_test_y[:, 0], z_test_y[:, 1], label='label{}'.format(y))

Shrink current axis by 20%

box = ax.get_position()

ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
Put a legend to the right of the current axis
ax.legend(loc='center left', bbox to_anchor=(1, 0.5))

2D Embedding

labelld
labell
label2
label3
labeld
labels
labelé
label?
labeld
labeld

LU B BB B B

Credits

This notebook is based on the variational inference tutorial from CO493 Probabilistic Inference (spring term 2019) taught by Marc Deisenroth.

References

[1] Imperial College London, CO493 Probabilistic Inference (spring term 2019), Marc Deisenroth, Variational Inference

[2] Diederik P. Kingma, Max Welling. Auto-Encoding Variational Bayes. 2014. https://arxiv.org/pdf/1312.6114v10.pdf (https://arxiv.org/pdf/1312.6114v10.pdf)
[3] Danilo J. Rezende, Shakir Mohamed, Daan Wierstra. Stochastic Backpropagation and Approximate Inference in Deep Generative Models. 2014.
https://arxiv.org/pdf/1401.4082.pdf (https://arxiv.org/pdf/1401.4082.pdf)

[4] What is the meaning of the word logits in TensorFlow? Accessed: 27/04/2019. https://stackoverflow.com/questions/41455101/what-is-the-meaning-of-the-
word-logits-in-tensorflow (https://stackoverflow.com/questions/41455101/what-is-the-meaning-of-the-word-logits-in-tensorflow)

[5] Willie Neiswanger. Lecture 13 : Variational Inference: Mean Field Approximation. Accessed: 27/04/2019. https://www.cs.cmu.edu/~epxing/Class/10708-
17/notes-17/10708-scribe-lecture13.pdf (https:/www.cs.cmu.edu/~epxing/Class/10708-17/notes-17/10708-scribe-lecture13.pdf)

[6] Imperial College London, CO493 Probabilistic Inference (spring term 2019), Marc Deisenroth, Sampling

[7] Machine Learning Trick of the Day (4): Reparameterisation Tricks. Accessed: 29/04/2019. http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-
day-4-reparameterisation-tricks/ (http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/)

https://arxiv.org/pdf/1312.6114v10.pdf
https://arxiv.org/pdf/1401.4082.pdf
https://stackoverflow.com/questions/41455101/what-is-the-meaning-of-the-word-logits-in-tensorflow
https://www.cs.cmu.edu/~epxing/Class/10708-17/notes-17/10708-scribe-lecture13.pdf
http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/

