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1 Vektorräume

Definition.
Eine Menge E zusammen mit zwei Verknüpfungen

+ : E× E→ E, (x, y) 7→ x+ y (Addition)

· : E× E→ E, (x, y) 7→ x · y (Multiplikation)

heisst Körper, wenn ∀x, y, z ∈ E folgendes gilt:

K1 E zusammen mit der Addition + ist eine abelsche Gruppe.
(Ihr neutrales Element wird mit 0, das zu a ∈ E inverse Element mit −a bezeichnet;
vgl. Diskrete Mathematik, 5. Algebra, Definition 5.7 und 5.8: 〈E; +〉 is an abelian
group):

(i) (Assoziativität) (x+ y) + z = x+ (y + z)

(ii) (Neutrales Element) ∃e ∈ E : x+ e = e+ x = x

(iii) (Inverses Element) ∃x′ ∈ E : x+ x′ = x′ + x = e

(iv) (Abelsch ⇔ Kommutativität) x+ y = y + x

K2 Bezeichnet E∗ := E \ {0}, so gilt für x, y ∈ E∗ auch x · y ∈ E∗, und E∗ zusammen
mit der so erhaltenen Multiplikation ist eine abelsche Gruppe.
(Ihr neutrales Element wird mit 1, das zu x ∈ E∗ inverse Element mit x−1 oder 1/x
bezeichnet. Man schreibt y/x = x−1y = yx−1.
Vgl. Diskrete Mathematik, 5. Algebra, Definition 5.7 und 5.8: 〈E; ·〉 is an abelian
group)

(vgl. Diskrete Mathematik, 5. Algebra: Definition 5.26 und Theorem 5.23)

Bemerkung.
Meistens werden wir mit den Körpern R oder C arbeiten. Ein weiterer Körper der für uns
Informatiker bekannt ist, ist der kleinste endliche Körper Z2, der nur {0, 1} enthält.

Definition.
Ein Vektorraum V über E (oder auch E-Vektorraum; VR) ist eine ist einen nichtleere
Menge V zusammen mit zwei Operationen:

+ : V × V → V, (x, y) 7→ x+ y (Addition)

· : E× V → V, (α, x) 7→ αy (Skalarmultiplikation)

so dass ∀x, y, z ∈ V und ∀α, β ∈ E gilt:

V1 V zusammen mit der Addition ist eine abelsche (kommutative) Gruppe (das neutrale
Element heißt Nullvektor, es wird mit 0, und das Negative wird mit −x bezeichnet;
vgl. Diskrete Mathematik, 5. Algebra: 〈V ; +〉 is an abelian group):

(i) (Assoziativität) (x+ y) + z = x+ (y + z)

(ii) (Neutrales Element) ∃e ∈ V : x+ e = e+ x = x

(iii) (Inverses Element) ∃x′ ∈ V : x+ x′ = x′ + x = e

(iv) (Abelsch ⇔ Kommutativität) x+ y = y + x
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V2 Die Multiplikation mit Skalaren muss in folgender Weise mit den anderen Verknüpfungen
verträglich sein:

(i) (Distributivität I) (α + β)x = αx+ βx

(ii) (Distributivität II) α(x+ y) = αx+ αy

(iii) (Assoziativität) (αβ)x = α(βx)

(iv) (Verträglichkeit mit 1) 1x = x

Beispiel 1:

1. n-dimensionale Vektoren bilden über E einen Vektorraum.

2. m× n-Matrizen bilden über E einen Vektorraum.

3. Pn := {Polynome in einer Variablen mit Koeffizienten in E von max. Grad n}
bilden über E einen Vektorraum.

Definition.
Sei V ein Vektorraum, U ⊆ V, U 6= {}. U hiesst Untervektorraum, Unterraum, linearer
Teilraum (UVR), falls sie bezüglich Addition und skalarer Multiplikation abgeschlossen
ist, d.h. wenn ∀x, y ∈ U und ∀α ∈ E gilt:

U1 x+ y ∈ U

U2 αx ∈ U .

Bemerkung.
Jeder Untervektorraum U enthählt den Nullvektor, d.h.

U0 0 ∈ U .

Satz.
Jeder Untervektorraum ist ein Vektorraum.

Beispiel 2:

Zu zeigen: W =


x1x2
x3

 ⊆ R3

∣∣∣∣∣∣x1 + x2 + x3 = 0


Bemerkung
Wir haben zwei Optionen:

1. Überprüfe ob V1 und V2 von der Vektorraum Definition erfüllt sind

2. Verwende den Satz von oben und zeige nur U1 und U2

Beweis:
Wir führen den Beweis mit der zweiten Option durch. Also genügt es nach dem Satz zu
zeigen, dass W ein Untervektorraum ist.

Seien x =

x1x2
x3

 , y =

y1y2
y3

 ∈ W,λ ∈ E
U0

0
0
0

 ∈ W , da 0 + 0 + 0 = 0, (U0 folgt trivialerweise)
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U1 x+ y =

x1 + y1
x2 + y2
x3 + y3

 ∈ W ,

da (x1 + y1) + (x2 + y2) + (x3 + y3) = (x1 + x2 + x3)︸ ︷︷ ︸
x1+x2+x3=0

+ (y1 + y2 + y3)︸ ︷︷ ︸
y1+y2+y3=0

= 0

U2 λx =

λx1λx2
λx3

 ∈ W , da λx1 + λx2 + λx3 = λ (x1 + x2 + x3)︸ ︷︷ ︸
x1+x2+x3=0

= 0

Oder statt, dass ihr U1 und U2 separat zeigt könnt ihr auch die ”all in one” Variante
zeigen:

U1/U2 x− λy =

x1 − λy1x2 − λy2
x3 − λy3

 ∈ W ,

da (x1−λy1)+(x2−λy2)+(x3−λy3) = (x1 + x2 + x3)︸ ︷︷ ︸
x1+x2+x3=0

−λ (y1 + y2 + y3)︸ ︷︷ ︸
y1+y2+y3=0

= 0 �

2 Basen, Dimensionen und lineare (Un-)Abhänigkeit

Bemerkung.
Für diesen Abschnitt werden wir folgendes annehmen. Sei V ein Vektorraum über einem
Körper K und eine Familie (Menge) (vi)i∈I von Vektoren vi ∈ V . Ist I = {1, ..., r}, so
hat man Vektoren v1, ..., vr.

Definition.
Seien v1, ..., vr ∈ V ausgewählte Vektoren. Ein Vektor der Form

x := λ1v1 + ...+ λrvr =
r∑

k=1

λkvk

mit λ1, ..., λr ∈ E heisst Linearkombination von v1, ..., vr.

Definition.
Für allgemeines I definiert man

spanE(vi)i∈I

als die Menge all der v ∈ V die sich aus einer (von v abhängigen) endlichen Teilfamilie
(Teilmenge) von (vi)i∈I linear kombinieren lassen.
Man nennt spanE(vi)i∈I den von der Familie (Menge) aufgespannten (oder erzeugten)
Raum. Für eine endliche Familie (v1, ..., vr) verwendet man oft die suggestivere Nota-
tion:

spanE(v1, ..., vr) : = Ev1 + ...+ Evn

= {v ∈ V | ∃λ1, ..., λr ∈ E mit v = λ1v1 + ...+ λrvr}.

Bemerkung.
Die folgenden Notationen sind äquivalent: spanE(v1, ..., vr)⇔ spanE{v1, ..., vr} ⇔ 〈v1, ..., vr〉.
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Definition.
Eine Familie B = (vi)i∈I in einem Vektorraum V heisst Erzeugendensystem von V ,
wenn

V = span(vi)i∈I ,

d.h. wenn jedes v ∈ V Linearkombination von endlich vielen vi ist.

Bemerkung.
Falls klar ist, welcher Körper gemeint ist, schreibt man nur span statt spanE.

Bemerkung.
Sei V ein E-Vektorraum und (vi)i∈I eine Familie (Menge) von Elementen aus V mit
I = {1, ..., r}. Dann gilt:

(i) span(v1, ..., vr) ist ein Untervektorraum

(ii) Ist W ⊂ V ein Untervektorraum und gilt vi ∈ W für alle i ∈ {1, ..., r} so ist
span(v1, ..., vr) ⊂ W .

Beispiel 3:

• span(1, x, x2, x3) = P3

• span(x3 + x2, x2 − 1, x, x− 1, 1000) = P3

⇒ ein Erzeugendensystem ist nicht eindeutig.

Definition.
v1, ..., vr ∈ V heissen linear unabhängig, wenn:

r∑
k=1

λkvk = λ1v1 + ...+ λrvr = 0 ⇒ λ1 = ... = λr = 0

und sonst heissen sie linear abhängig.

Bemerkung.
v1, ..., vr ∈ V heissen linear unabhängig genau dann, wenn kein vi sich als Linearkombi-
nation der anderen aj mit j 6= i schreiben lässt. (z.B. v1 ist keine Linearkombination von
v2, ..., vr schreiben).

Beispiel 4:

•

1
2
3

 ist linear abhängig von

2
4
6

, weil 2 ·

1
2
3

 =

2
4
6

.

•

1
2
3

 ist linear unabhängig von

0
2
3

.

Bei komponentenweiser Multiplikation bekommt man in der ersten Koordinate niemals
0, wenn man 2 und 3 behalten will.

Definition.
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Sei B = (bi)i∈I ⊆ V . B heisst Basis von V , wenn

V = span(B) (V wird erzeugt von B)

B = (bi)i∈I (alle bi sind untereinander linear unabhängig).

Satz.
B ist ein minimales Erzeugendensystem, d.h.

span(B) = V, aber span(B \ {bi}) 6= V, ∀bi ∈ B.

Satz.
B ist ein maximal linear unabhängige Teilmenge von V , d.h. (bi)i∈I sind linear unabhängig
aber (bi)i∈I ∪ {v} sind nicht mehr linear unabhängig, ∀v ∈ V \ B.

Bemerkung.
Sind B1 und B2 Basen von V , so gilt |B1| = |B2|. Jeder Vektorraum hat eine Basis.

Definition.
Sei B eine Basis von V . Dann ist |B| = dim(V ) (= # Basisvektoren) die Dimension von
V , wobei | · | =∧ Kardinalität von einer Menge ist.

Bemerkung.
Falls dim(V ) = n, dann gilt allgemein:

• Falls k < n, sind v1, ..., vk ∈ V nicht erzeugend

• Falls k > n, sind v1, ..., vk ∈ V erzeugend und linear abhängig

Basisauswahlsatz.
Aus jedem endlichen Erzeugendensystem eines Vektorraumes kann man eine Basis auswählen.
Insbesondere hat jeder endlich erzeugte Vektorraum eine endliche Basis.

Basisergänzungssatz.
In einem endlich erzeugten Vektorraum V seien linear unabhängige Vektoren w1, ..., wn

gegeben. Dann kann man wn + 1, ..., wr finden so dass

B = {w1, ..., wn, wn + 1, ..., wr}

eine Basis von V ist.

Beispiel 5:

• dim(Rn) = n = dim(Cn)

• dim(Pn) = n+ 1 (B(Pn) = {1, x, x2, ..., xn︸ ︷︷ ︸
n+1 Basisvektoren

})

• dimR(C) = 2 (Basis von C über dem Körper R ist z.B. {1, i})

• dimC(C) = 1 (Basis von C über dem Körper C ist z.B. {1})

Definition.
In einem endlich-dimensionalen Vektorraums V mit Skalarprodukt heisst der zu einem
echten Unterraum U orthogonale komlementäre Unterraum das othogonale Komplement
von U und wird mit U⊥ bezeichnet. Es wird implizit charakterisiert durch die Beziehung

V = U ⊕ U⊥, U⊥U⊥
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oder explizit durch
U⊥ := {x ∈ V |x⊥U}.

Wir nennen dann V eine direkte Summe orthogonaler Komplemente.

Eigenschaften.

(i) (U⊥)⊥ = U

(ii) dim(U)+ dim(U⊥) = dim(V ).
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Tricks beim Rechnen (bei Fragen betreffend Dimension, Basis, lineare Abhängigkeit,
etc.)
Gegeben: v1, ..., vk ∈ V
Gesucht: dim(V ), span(v1, ..., vk) linear unabhängig?

1. Schreibe


vT1

...

vTk

 = A in eine Matrix mit n Zeilen.

2. Führe Gauss-Elimination auf A aus bis ihr die Zeilenstufenform erreicht habt.

3. Ziehe Fazit:

• Rang(A) = dim(span(v1, ..., vk))

• Rang(A) = k ⇒ v1, ..., vk ist linear unabhängig

• Rang(A) < k ⇒ v1, ..., vk ist linear abhängig

• Rang(A) = dim(V ) ⇒ v1, ..., vk ist erzeugend

• Falls Rang(A) = dim(V ) = k, dann bilden v1, ..., vk also eine Basis für Rn

Beispiel 6:

Zu zeigen:

2
0
1

 ,

3
5
2

 ,

 0
1
−1

 ∈ R3 bilden eine Basis in R3.

Beweis:
Wissen dim(R3) = 3, und wir haben 3 Vektoren.
Jetzt müssen wir nur noch zeigen, dass die Vektoren linear unabhängig sind.2 0 1

3 5 2
0 1 −1

 (ii)−l21(i)
 

2 0 1
0 5 1

2

0 1 −1

 (iii)−l32(ii)
 

2 0 1
0 5 1

2

0 0 − 9
10

 = A

⇒ Rang(A) = 3 voller Rang
⇒ Vektoren sind linear unabhängig und bilden somit eine Basis von R3. �

Beispiel 7:
Ist B = {1, x, 1 + x2 + x3} eine Basis von P3?
Wenn ja beweise, wenn nein, erweitere zu einer Basis.
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Wir wissen: dim(P3) = 4
B kann keine sein, weil dim(B) = 3 < 4.

Behauptung : B′ = {1, x, 1 + x2 + x3, x2} ist eine Basis von P3.

Beweis :

1 =∧ e1

x =∧ e2

x2 =∧ e3

x3 =∧ e4

1 + x2 + x3 =∧ e1 + e3 + e4
1 0 0 0
0 1 0 0
1 0 1 1
0 0 1 0

 · · · 


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


⇒ linear unabhänging, also ist B′ eine Basis von P3 �

3 Basiswechsel, Koordinatentransformation (I)

Definition.
Seien A = (e1, ..., en) die kanonische Basis vom Vektorraum V und B = (b1, ..., bn) eine
weitere Basis von V beschrieben mit der kanonischen Basis. Dann existiert eine Trans-
formationsmatrix mit:

TB
A = (b1| · · · |bn) mit ei = TB

A bi, i ∈ {1, ..., n}.

VA VB
TA
B

Bemerkung.
Es gilt die folgende Rechenregel: TA

B = (TB
A )−1

Mit der obigen Definition erhalten wir somit: TA
B ei = bi, i ∈ {1, ..., n}.
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