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1 Vektorraume

Definition.
Eine Menge E zusammen mit zwei Verkniipfungen

+: ExE—E, (r,y)—2x+y (Addition)
ExE—-E, (z,y)—z-y (Multiplikation)

heisst Korper, wenn Vx,y, z € IE folgendes gilt:

K1 E zusammen mit der Addition + ist eine abelsche Gruppe.
(Ihr neutrales Element wird mit 0, das zu a € I inverse Element mit —a bezeichnet;
vgl. Diskrete Mathematik, 5. Algebra, Definition 5.7 und 5.8: (IE;+) is an abelian

group):

(i) (Assoziativitit) (x+y)+z=a0+(y+2)

(ii) (Neutrales Element) JdJeeE: z+e=e+r==x
(iii) (Inverses Element) dr'elE: s+ =r"+r=e

(iv) (Abelsch < Kommutativitét) rt+y=y+tuzw

K2 Bezeichnet E* := E \ {0}, so gilt fiir 2,y € E* auch z -y € E*, und E* zusammen
mit der so erhaltenen Multiplikation ist eine abelsche Gruppe.
(Thr neutrales Element wird mit 1, das zu z € E* inverse Element mit ="' oder 1/z
bezeichnet. Man schreibt y/z = 271y = yz 1.

Vgl. Diskrete Mathematik, 5. Algebra, Definition 5.7 und 5.8: (IE;-) is an abelian
group)
(vgl. Diskrete Mathematik, 5. Algebra: Definition 5.26 und Theorem 5.23)
Bemerkung.

Meistens werden wir mit den Korpern R oder C arbeiten. Ein weiterer Korper der fiir uns
Informatiker bekannt ist, ist der kleinste endliche Korper Zy, der nur {0, 1} enthélt.

Definition.
Ein Vektorraum V iiber E (oder auch E-Vektorraum; VR) ist eine ist einen nichtleere
Menge V' zusammen mit zwei Operationen:

+: VXV =V, (ry)—z+y (Addition)
ExV =V, (oz)—ay (Skalarmultiplikation)

so dass Vx,y,z € V und Vo, 8 € E gilt:

V1 V zusammen mit der Addition ist eine abelsche (kommutative) Gruppe (das neutrale
Element heifit Nullvektor, es wird mit 0, und das Negative wird mit —x bezeichnet;
vgl. Diskrete Mathematik, 5. Algebra: (V';+) is an abelian group):

(i) (Assoziativitat) (x4+y)+z=z+(y+2)
(ii) (Neutrales Element) deecV: z4+e=et+arx=2x
(iii) (Inverses Element) dJr'eV: xz+2'=2"+tr=e

(iv) (Abelsch < Kommutativitét) r+y=y+a



V2 Die Multiplikation mit Skalaren muss in folgender Weise mit den anderen Verkniipfungen
vertraglich sein:

(i) (Distributivitat I) (a+ p)r = ax + px
(ii) (Distributivitat IT) alzx+y) =ar+ oy
(iii) (Assoziativitét) (aB)x = a(fz)
(iv) (Vertréglichkeit mit 1) lr =2z

Beispiel 1:

1. n-dimensionale Vektoren bilden uber E einen Vektorraum.
2. m X n-Matrizen bilden uber E einen Vektorraum.

3. Pn := {Polynome in einer Variablen mit Koeffizienten in E von max. Grad n}
bilden tiiber I einen Vektorraum.

Definition.

Sei V' ein Vektorraum, U C V, U # {}. U hiesst Untervektorraum, Unterraum, linearer
Teilraum (UVR), falls sie beziiglich Addition und skalarer Multiplikation abgeschlossen
ist, d.h. wenn Vz,y € U und Vo € E gilt:

Ul z+yelU
U2 ax e U.
Bemerkung.
Jeder Untervektorraum U enthahlt den Nullvektor, d.h.
U0 0eU.
Satz.
Jeder Untervektorraum ist ein Vektorraum.
Beispiel 2:
x1
Zu zeigen: W = 2o | CR* 2y +29+23=0
x3
Bemerkung

Wir haben zwei Optionen:
1. Uberpriife ob V1 und V2 von der Vektorraum Definition erfiillt sind
2. Verwende den Satz von oben und zeige nur Ul und U2

Beweis:
Wir fithren den Beweis mit der zweiten Option durch. Also geniigt es nach dem Satz zu
zeigen, dass W ein Untervektorraum ist.

L1 Y1
Seienz =[x | ,y=[y | eW, A€ E
3 Y3
0
U0o |0 eW,da0+0+40=0, (UO folgt trivialerweise)
0



T+ N
Ul z+y= a2ty | €W,

T3+ Ys
da (z1+uy1) + (22 +y2) + (@3 +ys) = (@1 + w2+ a3)+ (1 + 42 +ys) =0
x1+x;x3=0 y1+y;y3=0
Axq
U2 e = Az | e W, daAzy + Axe+Azg = A(x1+ 20 +23) =0
AT e

Oder statt, dass ihr Ul und U2 separat zeigt konnt ihr auch die ”all in one” Variante

zeigen:
T — Ay
Ul/U2 2 —Ay= |[z2— Ay | € W,
T3 — A\y3
da (:cl—/\y1)+(x2—/\y2)+(x3—/\y3) = (x1 + 29 + ZEg) -A (y1 -+ Y2 + yg) =0 [l

N S [ J

NV TV
z1+22+23=0 y1+y2+y3=0

2 Basen, Dimensionen und lineare (Un-) Abhénigkeit

Bemerkung.

Fiir diesen Abschnitt werden wir folgendes annehmen. Sei V' ein Vektorraum iiber einem
Korper K und eine Familie (Menge) (v;);er von Vektoren v; € V. Ist I = {1,...,7}, so
hat man Vektoren vy, ..., v,.

Definition.
Seien vy, ..., v, € V ausgewahlte Vektoren. Ein Vektor der Form

T = )\11)1 —+ ...+ )\T’UT = Z)\kvk
k=1

mit A, ..., A, € E heisst Linearkombination von vy, ..., v,.

Definition.
Fiir allgemeines I definiert man

spang (v )ier
als die Menge all der v € V' die sich aus einer (von v abhéngigen) endlichen Teilfamilie
(Teilmenge) von (v;);es linear kombinieren lassen.
Man nennt spang(v;);e; den von der Familie (Menge) aufgespannten (oder erzeugten)
Raum. Fiir eine endliche Familie (vy,...,v,) verwendet man oft die suggestivere Nota-
tion:

spang(vy, ..., v) : = Evy + ... + Ev,
={veV | I, . A €Emitv=XMNv+ ..+ \v}.

Bemerkung.
Die folgenden Notationen sind dquivalent: spang(vy, ..., v,) < spang{vi, ..., v, } < (vq, ..., v.).



Definition.
Eine Familie B = (v;);es in einem Vektorraum V' heisst Erzeugendensystem von V,
wenn

V' = span(v;)cr,

d.h. wenn jedes v € V' Linearkombination von endlich vielen v; ist.

Bemerkung.
Falls klar ist, welcher Korper gemeint ist, schreibt man nur span statt spang.

Bemerkung.
Sei V ein E-Vektorraum und (v;);e; eine Familie (Menge) von Elementen aus V mit
I ={1,...,r}. Dann gilt:

(i) span(vy, ..., v,) ist ein Untervektorraum

(ii) Ist W C V ein Untervektorraum und gilt v; € W fur alle i € {1,...,7} so ist
span(vy, ..., v,) C W.

Beispiel 3:

e span(l,z, 22, 23) = Ps

e span(z® + 2%, 22 — 1, 2,2 — 1,1000) = Ps
= ein Erzeugendensystem ist nicht eindeutig.

Definition.
vy, ..., v € V heissen linear unabhangig, wenn:

ZAM MU 4+ N0, =0 = A =..=\.=0
k=1

und sonst heissen sie linear abhdngig.

Bemerkung.

vy, ..., € V heissen linear unabhangig genau dann, wenn kein v; sich als Linearkombi-
nation der anderen a; mit j # 4 schreiben lésst. (z.B. v ist keine Linearkombination von
Vg, ..., U, schreiben).

Beispiel 4:

1 2 1 2
e | 2| ist linear abhangig von |4 ]|, weil 2-[2] =14
3 6 3 6
1 0
e | 2| ist linear unabhangig von | 2
3 3

Bei komponentenweiser Multiplikation bekommt man in der ersten Koordinate niemals
0, wenn man 2 und 3 behalten will.

Definition.



Sei B = (b;)ie; € V. B heisst Basis von V| wenn

V =span(B) (V wird erzeugt von B)

B = (b;)icr (alle b; sind untereinander linear unabhéngig).

Satz.
B ist ein minimales Erzeugendensystem, d.h.

span(B) =V, aber span(B\ {b;}) #V, Vb; € B.

Satz.
BB ist ein maximal linear unabhéngige Teilmenge von V', d.h. (b;);¢; sind linear unabhéngig
aber (b;);e; U {v} sind nicht mehr linear unabhéngig, Vv € V' \ B.

Bemerkung.
Sind B; und B, Basen von V, so gilt |B;| = |Bs|. Jeder Vektorraum hat eine Basis.

Definition.

Sei B eine Basis von V. Dann ist |B| = dim(V') (= # Basisvektoren) die Dimension von
V', wobei | - | £ Kardinalitét von einer Menge ist.

Bemerkung.

Falls dim(V') = n, dann gilt allgemein:
e Falls k < n, sind vy, ...,vp € V nicht erzeugend
e Falls k > n, sind vy, ...,vx € V erzeugend und linear abhdangig

Basisauswahlsatz.
Aus jedem endlichen Erzeugendensystem eines Vektorraumes kann man eine Basis auswéhlen.
Insbesondere hat jeder endlich erzeugte Vektorraum eine endliche Basis.

Basiserganzungssatz.
In einem endlich erzeugten Vektorraum V' seien linear unabhangige Vektoren wy, ..., w,
gegeben. Dann kann man w,, + 1, ..., w, finden so dass

B={wy,...,w,,w, +1,...,w,}
eine Basis von V ist.
Beispiel 5:
e dim(R™) =n = dim(C")

e dim(P,) = W) = {1, 2, 2%, .., 2"
(Pn)=n+1 (B(Ps) {7%;61{_/;1})
e dimg(C) =2 (Basis von C iiber dem Korper R ist z.B. {1,i})
e dimg(C) =1 (Basis von C iiber dem Korper C ist z.B. {1})
Definition.

In einem endlich-dimensionalen Vektorraums V mit Skalarprodukt heisst der zu einem
echten Unterraum U orthogonale komlementare Unterraum das othogonale Komplement
von U und wird mit U+ bezeichnet. Es wird implizit charakterisiert durch die Beziehung

V=UaU", UlUu+

6



oder explizit durch
Ut = {z e V]zLlU}.

Wir nennen dann V' eine direkte Summe orthogonaler Komplemente.
Eigenschaften.

i) UH)*=U

(ii) dim(U)+ dim(U+) = dim(V).



fh

Let’ ok

Tricks beim Rechnen (bei Fragen betreffend Dimension, Basis, lineare Abhéngigkeit,
etc.)

Gegeben: vq,...,v, € V

Gesucht: dim(V'), span(vy, ..., vx) linear unabhéngig?

vt

1. Schreibe : = A in eine Matrix mit n Zeilen.

T
Vg,

2. Fiihre Gauss-Elimination auf A aus bis ihr die Zeilenstufenform erreicht habt.
3. Ziehe Fazit:

e Rang(A) = dim(span(vy, ..., vg))

e Rang(A)

e Rang(A)

k= v,..., v ist linear unabhangig
<k = wvy,...,v; ist linear abhangig
e Rang(A) = dim(V) = wy,..., v ist erzeugend
e Falls Rang(A) = dim(V) = k, dann bilden vy, ..., v; also eine Basis fiir R
Beispiel 6:

2 3 0
Zu zeigen: 0|, 5], 1 | €R3 bilden eine Basis in R3.
1 2 —1

Bewezs:
Wissen dim(R?) = 3, und wir haben 3 Vektoren.
Jetzt miissen wir nur noch zeigen, dass die Vektoren linear unabhéangig sind.

2 0 1 (68—t (1) 2 0 1 (1) i) 2 0 1
3 5 2 43 M_%l (A O 5 % 17 M?)Q K43 O 5 % _ A
01 -1 01 -1 00 —5%
=  Rang(A) =3 voller Rang
= Vektoren sind linear unabhingig und bilden somit eine Basis von R3. O

Beispiel 7:
Ist B={1,z,1+ 2? + 2} eine Basis von Ps?
Wenn ja beweise, wenn nein, erweitere zu einer Basis.



Wir wissen: dim(Ps3) = 4
B kann keine sein, weil dim(B) = 3 < 4.

Behauptung: B' = {1,z,1+ x> + 2, 2?} ist eine Basis von Ps.

Beweis:

1000 1 000
01 00 o~ 01 00
1011 0010
0010 0001
= linear unabhénging, also ist B’ eine Basis von Ps 0

3 Basiswechsel, Koordinatentransformation (I)

Definition.

Seien A = (e, ..., e,) die kanonische Basis vom Vektorraum V und B = (b, ...,b,) eine
weitere Basis von V beschrieben mit der kanonischen Basis. Dann existiert eine Trans-
formationsmatriz mit:

79 =] -+ |by) it e; =TFb;, i€ {1,...n}.

Ty
Vi——"—— V3

Bemerkung.
Es gilt die folgende Rechenregel: T4 = (T9)™1
Mit der obigen Definition erhalten wir somit: The; =b;, i €{1,...n}.



