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1 Lineare Abbildungen

Definition.
Eine Abbildung f : X → Y heisst injektiv, falls

∀x1, x2 ∈ X : x1 6= x2 ⇒ f(x1) 6= f(x2).

(In Worten: Verschiedene Elemente aus X werden auf verschiedene Bilder in Y abge-
bildet.)

Definition.
Eine Abbildung f : X → Y heisst surjektiv, falls

∀y ∈ Y ∃x ∈ X : f(x) = y.

(In Worten: Jedes Element aus Y wird von f ”getroffen”.)

Definition.
Eine Abbildung f : X → Y heisst bijektiv, falls

∀y ∈ Y ∃!x ∈ X : f(x) = y.

(In Worten: Jedes Element aus Y wird von f genau eins ”getroffen”.)

Definition.
Eine Abbildung F : V → W zwischen E-Vektorräumen V und W heisst linear (genauer
Homomorphismus von E-Vektorräumen), wenn ∀v, w ∈ V und ∀λ ∈ E:

L1 F (v + w) = F (v) + F (w)

L2 F (λv) = λF (v)

Diese beiden Bedingungen kann man zusammenfassen zu einer:

L F (v + λw) = F (v) + λF (w).

Notation.
Für F : V → W linear ist F ∈ Hom(V,W ).

Bemerkung.
Es ist üblich, den Begriff Homomorphismus zu verschärfen:

(i) F ∈ Hom(V,W ) und bijektiv ⇔ Isomorphismus (Notation: V =̃W )

(ii) F ∈ Hom(V,W ) und V = W ⇔ Endomorphismus (Notation: F ∈ End(V ))

(iii) F ∈ End(V ) und bijektiv ⇔ Automorphismus

Zudem gilt: (i) ⇔ ∃G : W → V linear, so dass F ◦G = idW , G ◦ F = idV , d.h.

∀w ∈ W : F (G(w)) = w

∀v ∈ V : G(F (v)) = v

Bemerkung.
Seien M(F ), M(G) die darstellenden Matrizen von F : V → W isomorph und G : W → V
homomorph und V,W sind endlichdimensionale Vektorräume, d.h. dim(V ) < ∞ und
dim(W ) <∞. Dann bedeutet Bijektivität von F , dass
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• dim(V ) = dim(W )

• M(F ) ·M(G) = M(G) ·M(F ) = 1dim(V ) ⇔M(F ) = (M(G))−1

Definition.
Zu jeder Basis B = {v1, ..., vn} von V gibt es genau einen Isomorphismus:

φB : En → V, (x1, ..., xn) 7→ φB(x1, ..., xn) =
n∑

k=1

xkvk = x1v1+ ...+xnvn mit φB(ei) = vi.

(In Worten: φB ordnet x seinen Koordinaten bezüglich der Basis B zu.)

Definition.
Sei die F ∈ Hom(V,W ).

• Im(F ) := F (V ) = {F (v)|v ∈ V } ⊂ W ist ein Untervektorraum von W und heisst
Bild(F ) oder Im(F ).

• ker(F ) := {v ∈ V |F (v) = 0} ⊂ V ist ein Untervektorraum von V und heisst
ker(F ).

Satz.
Sei F : V → W linear und V, W sind Vektorräume. Dann gilt:

(i) F (0) = 0, die Null wird immer auf die Null abgebildet

(ii) F surjektiv ⇔ Im(F ) = W ⇔ dim(Im(F )) = dim(W )

(iii) F injektiv ⇔ ker(F ) = {0} ⇔ dim(ker(F )) = 0

(iv) F ist ein Isomorphismus ⇔ dim(V ) = dim(W ) = rang(F )

Satz.
Sind f, g linear Abbildungen ⇒ f ◦ g ist eine lineare Abbildung.

Satz.
Sind f, g lineare Abbildungen, dann ist die Funktion F := f ± g die aus der Linearkom-
bination von f, g entsteht wieder eine lineare Abbildung.

Definition.
Der Rang der linearen Abbildung F ist definiert als:

rang(F ) = dim(Im(F )).

Bemerkung.
Der Rang der linearen Abbildung F ist gleich dem Rang ihrer Abbildungsmatrix M(F ).
Es gilt: rang(F ) = dim(Im(F )) = rang(M(F )) = rang(M(F )T )

Bemerkung.
Zeilenrang = Spaltenrang: rang(M(F )) = rang(M(F )T )
Achtung : Im Allgemeinen gilt: Spaltenraum 6= Zeilenraum

Satz.
Seien V undW zwei endlichdimensionale Vektorräume eines grösseren Vektorraums (endlichdi-
mensional ⇔ dim(V ) = n <∞ und dim(W ) = k <∞) und sei f : V → W linear, dann
gelten die folgenden Dimensionsformeln :
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• dim(V +W ) = dim(V ) + dim(W )− dim(V ∩W )

• n = dim(V ) = dim(ker(f)) + dim(Im(f))

Eigenschaften von linearen Abbildungen:
Seien V,W E-Vektorräume und B = {v1, ..., vn} eine Basis von V . Sei F : V → W
linear.

• Im(F ) = span(F (v1), ..., F (vn)), d.h. F ist eindeutig definiert durch die Werte der
Basisvektoren

• Ist F injektiv und v1, ..., vn ∈ V linear unabhängig, dann sind F (v1), ..., F (vn) ∈
Im(F ) linear unabhängig

• dim(F ) <∞ und F injektiv ⇒ F ist bijektiv!

Beispiel 1:
Sei F : R→ R, x 7→ 5x− 1.

F ist nicht linear, da F (0) = −1 6= 0.

Bemerkung.
Sei f ∈ Hom(V,W ) und die Vektorräume V,W sind endlichdimensional. Das Bild von f
wir aufgespannt von den Spalten von M(f), d.h.
Im(f) = span{Spalten von M(f)}.

Bemerkung.
Sei F ∈ Hom(V,W ) und die dazugehörige Abbildungsmatrix M(F ). Dann gilt:

F (x) = 0 ⇔ M(F )x = 0.

Beispiel 2:
Gegeben:

F : R3 → R3, x =

x1x2
x3

 7→
 x1 + x2 − x3

3x1 + x2 + 2x3
2x1 + 3x3


mit M(F ) =

1 1 −1
3 1 2
2 0 3

 , s.d. M(F )x = F (x)

Gesucht: ker(F ), Basis vom ker(F ), Im(F ), Basis von Im(F )

Um ker(F ) zu berechnen, berechne die Zeilenstufenform von M(F ):

M(F ) =

1 1 −1
3 1 2
2 0 3

 (ii)−l21(i)
 

1 1 −1
0 −2 5
2 0 3

 (iii)−l31(i)
 

1 1 −1
0 −2 5
0 −2 5


(iii)−l32(ii)
 

1 1 −1
0 −2 5
0 0 0

 (i)− 1
−2

(ii)
 

1 0 3
2

0 −2 5
0 0 0

 2(i)
 

2 0 3
0 −2 5
0 0 0

 =: M̃(F )
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Um Basis zu finden benutzen wir die Dimensionsformel:

dim(R3) = dim(ker(F )) + dim(Im(F ))

⇔ dim(ker(F )) = dim(R3)− dim(Im(F ))

⇔ dim(ker(F )) = 3− 2

= 1

dim(Im(F )) = rang(F ) = rang(M(F )) = 2 können wir direkt von M̃(F ) ablesen. Dank
der Dimensionsformel wissen, wir das die Basis vom Kern F einen Basisvektor enthält.
Folgend werden die Lösungsmenge von M(F ) (bzw. M̃(F )) berechnen, welche zugleich

der ker(F ) =ker(M(F )) =ker(M̃(F )) ist, da wir das LGS M(F )x = 0 lösen.
(Wie ihr in der Übungsstunde gesehen habt, können wir die Vektoren, die im Kern liegen,

auch mit Hilfe von M̃(F ) ”erraten”.)

M̃(F )
3. Zeile⇒ t := x3, t ∈ R freier Parameter

M̃(F )
2. Zeile⇒ −2x2 + 5x3 = 0
t=x3⇔ −2x2 + 5t = 0

⇔ 2x2 = 5t

⇔ x2 =
5

2
t

M̃(F )
1. Zeile⇒ 2x1 + 3x3 = 0
t=x3⇔ 2x1 + 3t = 0

⇔ 2x2 = −3t

⇔ x2 = −3

2
t

=⇒ L =


x1x2
x3

∣∣∣∣∣∣
−3

2
5
2

1

 · t, t ∈ R


⇒ ker(F ) = ker(M(F )) =


x1x2
x3

∣∣∣∣∣∣
−3

2
5
2

1

 · x3, x3 ∈ R3


= span


x1x2
x3

∣∣∣∣∣∣
−3

2
5
2

1


= span


x1x2
x3

∣∣∣∣∣∣
−3

5
2


⇒ Basis vom ker(F ) ist zum Beispiel : Bker(F ) =


−3

5
2


Für das Bild Im(F ) wissen wir wegen der Bemerkung von oben:

Im(F ) = span


1

3
2

 ,

1
1
0

 ,

−1
2
3


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Wähle aus den Spalten von M(F ) (Erzeugendensystem von Im(F )) zwei Vektoren als

Basis von Im(F ), nämlich diejenigen die Pivotelemente in M̃(F ) haben:

⇒ BIm(F ) =


1

3
2

 ,

1
1
0


Beispiel 3:
Gegeben: F : R3 → R2 ist gegeben durch die folgende Matrix:

M(F ) =

(
1 2 3
4 5 6

)
Gesucht: Bestimme die Basen von ker(F ) und Im(F ).

M(F ) =

(
1 2 3
4 5 6

)
(ii)−l21(i)
 

(
1 2 3
0 −3 −6

)
(i)− 2

−3
(ii)

 

(
1 0 −1
0 −3 −6

)
=: M̃(F )

Um die dim(ker(F )) zu finden benutzen wir die Dimensionsformel:

dim(R3) = dim(ker(F )) + dim(Im(F ))

⇔ dim(ker(F )) = dim(R3)− dim(Im(F ))

⇔ dim(ker(F )) = 3− 2

= 1

dim(Im(F )) = rang(F ) = rang(M(F )) = 2 können wir direkt von M̃(F ) ablesen.
Dank der Dimensionsformel wissen, wir das die Basis vom Kern F einen Basisvektor
enthält.

⇒ ker(F ) = ker(M(F )) =


x1x2
x3

∣∣∣∣∣∣
 1
−2
1

 · x3, x3 ∈ R3


= span


x1x2
x3

∣∣∣∣∣∣
 1
−2
1



⇒ Basis vom ker(F ) ist zum Beispiel : Bker(F ) =


 1
−2
1


Für das Bild Im(F ) wissen wir wegen der Bemerkung von oben:

Im(F ) = span

{(
1
4

)
,

(
2
5

)
,

(
3
6

)}
Wähle aus den Spalten von M(F ) (Erzeugendensystem von Im(F )) zwei Vektoren als

Basis von Im(F ), nämlich diejenigen die Pivotelemente in M̃(F ) haben:

⇒ BIm(F ) =

{(
1
4

)
,

(
2
5

)}
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Abbildungsmatrix (darstellende Matrix; Spezialfall mit Standardbasis)
Gegeben: V,W ein Vektorraum, F : (V,A) → (W,B), v 7→ F (v) und Basis von V mit
A = {a1, ..., an} und die Standardbasis von W mit B = {b1, ..., bm}
Gesucht: MA

B (F )

1. Berechne für jeden Basisvektor F (ai), i ∈ {1, ..., n}

2. Erstelle MA
B (F ) = (F (a1), ..., F (an)︸ ︷︷ ︸

n-Spalten

) } m-Zeilen.

Wir haben die Abbildungsmatrix von F erhalten, wobei der Definitionsbereich
bezüglich A und Bildbereich bezüglich B gegeben ist.

Beispiel 4:
Sei F = d

dt
: P2 → P1, p 7→ ṗ = dp

dt
.

(i) Zu zeigen: F ist eine lineare Abbildung.

Beweis: ∀a, b ∈ P2, λ ∈ E :

F (a+ λb) =
d

dt
(a+ λb)

=
d

dt
a+ λ

d

dt
b

= F (a) + λF (b) �

(ii) Finde die Abbildungsmatrix MB
B (F ) bezüglich der Monombasis B = {1, t, t2}.

p = λ0 + λ1t+ λ2t
2 ∈ P2, p =∧

λ0λ1
λ2

 ∈ E3

ṗ = λ1 + 2λ2t ∈ P1, ṗ =∧

 λ1
2λ2
0

 ∈ E3

1 =∧ e1

t =∧ e2

t2 =∧ e3

ṗ(1) =∧ ṗ(e1) =

0
0
0

 , ṗ(t) =∧ ṗ(e2) =

1
0
0

 , ṗ(t2) =∧ ṗ(e3) =

0
2
0


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=⇒ MB
B (F ) =

0 1 0
0 0 2
0 0 0


Bemerkung.
Ein Polynom p ∈ Pn ist durch die Funktionswerte p(xi) an n+ 1 paarweise verschiedenen
Punkten xi ∈ {1, ..., n} eindeutig bestimmt.

Bemerkung.
Seien V, U,W E-Vektorräume mit dim(V ) = n, dim(U) = k und dim(W ) = `, dann ist
die Dimensionsregel für Verknüpfungen von linearen Abbildungen:

M(f) ∈ R`×n, M(g) ∈ Rk×` ⇒ M(g ◦ f) = M(g) ·M(f) ∈ (”Rk×` ·R`×n”) = Rk×n

2 Basiswechsel, Koordinatentransformation (I)

Definition.
Seien A = (e1, ..., en) die kanonische Basis vom Vektorraum V und B = (b1, ..., bn) eine
weitere Basis von V beschrieben mit der kanonischen Basis. Dann existiert eine Trans-
formationsmatrix mit:

TB
A = (b1| · · · |bn) mit ei = TB

A bi, i ∈ {1, ..., n}.

VA VB
TA
B

Bemerkung.
Es gilt die folgende Rechenregel: TA

B = (TB
A )−1

Mit der obigen Definition erhalten wir somit: TA
B ei = bi, i ∈ {1, ..., n}.
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