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1 Erinnerung (Orthogonale und unitäre Martrizen)

Definition.
Eine komplexe n× n - Matrix A heisst unitär , falls AHA = AAH = 1.
Eine reelle n× n - Matrix A heisst orthogonal , falls ATA = AAT = 1.

Satz.
Sind A,B ∈ En×n unitäre (bzw. orthogonale) Matrizen, so gilt:

(i) A ist regulär

(ii) A−1 = AH (bzw. A−1 = AT )

(iii) A−1 ist unitär (orthogonal)

(iv) AB ist unitär (orthogonal)

Definition.
Das Kronecker-Delta ist definiert durch:

δij =

{
1, i = j

0, i 6= j

Definition. Einheitsvektoren

e1 :=


1
0
...
0

 , e2 :=


0
1
0
...
0

 , ei :=



0
...
0
1
0
...
0


, en :=


0
...
0
1



Beispiel 1:

• 〈e1, e2〉 = 0

• 〈e1, e1〉 = 1

Definition Orthonormal
Seien a, b ∈ En. Die Vektoren a, b sind orthonormal, falls folgenden Bedingungen erfüllt
sind:

(i) Die Vektoren sind normiert, also es gilt:

‖a‖ = 1 bzw. ‖b‖ = 1.

(ii) Die Vektoren sind orthogonal, also es gilt:

〈a, b〉 =

{
1, a = b

0, a 6= b

Bemerkung.
Für eine orthogonale Matrix A ∈ En×n mit der Form A = (a1|...|an) sind die Spaltenvek-
toren a1, ..., an paarweise orthonormal.
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2 Lineare Abbildungen

Definition.
Eine Abbildung f : X → Y heisst injektiv, falls

∀x1, x2 ∈ X : x1 6= x2 ⇒ f(x1) 6= f(x2).

(In Worten: Verschiedene Elemente aus X werden auf verschiedene Bilder in Y abge-
bildet.)

Definition.
Eine Abbildung f : X → Y heisst surjektiv, falls

∀y ∈ Y ∃x ∈ X : f(x) = y.

(In Worten: Jedes Element aus Y wird von f ”getroffen”.)

Definition.
Eine Abbildung f : X → Y heisst bijektiv, falls

∀y ∈ Y ∃!x ∈ X : f(x) = y.

(In Worten: Jedes Element aus Y wird von f genau eins ”getroffen”.)

Definition.
Eine Abbildung F : V → W zwischen E-Vektorräumen V und W heisst linear (genauer
Homomorphismus von E-Vektorräumen), wenn ∀v, w ∈ V und ∀λ ∈ E:

L1 F (v + w) = F (v) + F (w)

L2 F (λv) = λF (v)

Diese beiden Bedingungen kann man zusammenfassen zu einer:

L F (v + λw) = F (v) + λF (w).

Notation.
Für F : V → W linear ist F ∈ Hom(V,W ).

Bemerkung.
Es ist üblich, den Begriff Homomorphismus zu verschärfen:

(i) F ∈ Hom(V,W ) und bijektiv ⇔ Isomorphismus (Notation: V =̃W )

(ii) F ∈ Hom(V,W ) und V = W ⇔ Endomorphismus (Notation: F ∈ End(V ))

(iii) F ∈ End(V ) und bijektiv ⇔ Automorphismus

Zudem gilt: (i) ⇔ ∃G : W → V linear, so dass F ◦G = idW , G ◦ F = idV , d.h.

∀w ∈ W : F (G(w)) = w

∀v ∈ V : G(F (v)) = v

Bemerkung.
Seien M(F ), M(G) die darstellenden Matrizen von F : V → W isomorph und G : W → V
homomorph und V,W sind endlichdimensionale Vektorräume, d.h. dim(V ) < ∞ und
dim(W ) <∞. Dann bedeutet Bijektivität von F , dass
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• dim(V ) = dim(W )

• M(F ) ·M(G) = M(G) ·M(F ) = 1dim(V ) ⇔M(F ) = (M(G))−1

Definition.
Zu jeder Basis B = {v1, ..., vn} von V gibt es genau einen Isomorphismus:

φB : En → V, (x1, ..., xn) 7→ φB(x1, ..., xn) =
n∑

k=1

xkvk = x1v1+ ...+xnvn mit φB(ei) = vi.

(In Worten: φB ordnet x seinen Koordinaten bezüglich der Basis B zu.)

Definition.
Sei die F ∈ Hom(V,W ).

• Im(F ) := F (V ) = {F (v)|v ∈ V } ⊂ W ist ein Untervektorraum von W und heisst
Bild(F ) oder Im(F ).

• ker(F ) := {v ∈ V |F (v) = 0} ⊂ V ist ein Untervektorraum von V und heisst
ker(F ).

Satz.
Sei F : V → W linear und V, W sind Vektorräume. Dann gilt:

(i) F (0) = 0, die Null wird immer auf die Null abgebildet

(ii) F surjektiv ⇔ Im(F ) = W ⇔ dim(Im(F )) = dim(W )

(iii) F injektiv ⇔ ker(F ) = {0} ⇔ dim(ker(F )) = 0

(iv) F ist ein Isomorphismus ⇔ dim(V ) = dim(W ) = rang(F )

Satz.
Sind f, g linear Abbildungen ⇒ f ◦ g ist eine lineare Abbildung.

Satz.
Sind f, g lineare Abbildungen, dann ist die Funktion F := f ± g die aus der Linearkom-
bination von f, g entsteht wieder eine lineare Abbildung.

Definition.
Der Rang der linearen Abbildung F ist definiert als:

rang(F ) = dim(Im(F )).

Bemerkung.
Der Rang der linearen Abbildung F ist gleich dem Rang ihrer Abbildungsmatrix M(F ).
Es gilt: rang(F ) = dim(Im(F )) = rang(M(F )) = rang(M(F )T )

Bemerkung.
Zeilenrang = Spaltenrang: rang(M(F )) = rang(M(F )T )
Achtung : Im Allgemeinen gilt: Spaltenraum 6= Zeilenraum

Satz.
Seien V undW zwei endlichdimensionale Vektorräume eines grösseren Vektorraums (endlichdi-
mensional ⇔ dim(V ) = n <∞ und dim(W ) = k <∞) und sei f : V → W linear, dann
gelten die folgenden Dimensionsformeln :
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• dim(V +W ) = dim(V ) + dim(W )− dim(V ∩W )

• n = dim(V ) = dim(ker(f)) + dim(Im(f))

Eigenschaften von linearen Abbildungen:
Seien V,W E-Vektorräume und B = {v1, ..., vn} eine Basis von V . Sei F : V → W
linear.

• Im(F ) = span(F (v1), ..., F (vn)), d.h. F ist eindeutig definiert durch die Werte der
Basisvektoren

• Ist F injektiv und v1, ..., vn ∈ V linear unabhängig, dann sind F (v1), ..., F (vn) ∈
Im(F ) linear unabhängig

• dim(F ) <∞ und F injektiv ⇒ F ist bijektiv!

Beispiel 2:
Sei F : R→ R, x 7→ 5x− 1.

F ist nicht linear, da F (0) = −1 6= 0.

Bemerkung.
Sei f ∈ Hom(V,W ) und die Vektorräume V,W sind endlichdimensional. Das Bild von f
wir aufgespannt von den Spalten von M(f), d.h.
Im(f) = span{Spalten von M(f)}.

Bemerkung.
Sei F ∈ Hom(V,W ) und die dazugehörige Abbildungsmatrix M(F ). Dann gilt:

F (x) = 0 ⇔ M(F )x = 0.

Beispiel 3:
Gegeben:

F : R3 → R3, x =

x1x2
x3

 7→
 x1 + x2 − x3

3x1 + x2 + 2x3
2x1 + 3x3


mit M(F ) =

1 1 −1
3 1 2
2 0 3

 , s.d. M(F )x = F (x)

Gesucht: ker(F ), Basis vom ker(F ), Im(F ), Basis von Im(F )

Um ker(F ) zu berechnen, berechne die Zeilenstufenform von M(F ):

M(F ) =

1 1 −1
3 1 2
2 0 3

 (ii)−l21(i)
 

1 1 −1
0 −2 5
2 0 3

 (iii)−l31(i)
 

1 1 −1
0 −2 5
0 −2 5


(iii)−l32(ii)
 

1 1 −1
0 −2 5
0 0 0

 (i)− 1
−2

(ii)
 

1 0 3
2

0 −2 5
0 0 0

 2(i)
 

2 0 3
0 −2 5
0 0 0

 =: M̃(F )
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Um Basis zu finden benutzen wir die Dimensionsformel:

dim(R3) = dim(ker(F )) + dim(Im(F ))

⇔ dim(ker(F )) = dim(R3)− dim(Im(F ))

⇔ dim(ker(F )) = 3− 2

= 1

dim(Im(F )) = rang(F ) = rang(M(F )) = 2 können wir direkt von M̃(F ) ablesen. Dank
der Dimensionsformel wissen, wir das die Basis vom Kern F einen Basisvektor enthält.
Folgend werden die Lösungsmenge von M(F ) (bzw. M̃(F )) berechnen, welche zugleich

der ker(F ) =ker(M(F )) =ker(M̃(F )) ist, da wir das LGS M(F )x = 0 lösen.
(Wie ihr in der Übungsstunde gesehen habt, können wir die Vektoren, die im Kern liegen,

auch mit Hilfe von M̃(F ) ”erraten”.)

M̃(F )
3. Zeile⇒ t := x3, t ∈ R freier Parameter

M̃(F )
2. Zeile⇒ −2x2 + 5x3 = 0
t=x3⇔ −2x2 + 5t = 0

⇔ 2x2 = 5t

⇔ x2 =
5

2
t

M̃(F )
1. Zeile⇒ 2x1 + 3x3 = 0
t=x3⇔ 2x1 + 3t = 0

⇔ 2x2 = −3t

⇔ x2 = −3

2
t

=⇒ L =


x1x2
x3

∣∣∣∣∣∣
−3

2
5
2

1

 · t, t ∈ R


⇒ ker(F ) = ker(M(F )) =


x1x2
x3

∣∣∣∣∣∣
−3

2
5
2

1

 · x3, x3 ∈ R3


= span


x1x2
x3

∣∣∣∣∣∣
−3

2
5
2

1


= span


x1x2
x3

∣∣∣∣∣∣
−3

5
2


⇒ Basis vom ker(F ) ist zum Beispiel : Bker(F ) =


−3

5
2


Für das Bild Im(F ) wissen wir wegen der Bemerkung von oben:

Im(F ) = span


1

3
2

 ,

1
1
0

 ,

−1
2
3


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Wähle aus den Spalten von M(F ) (Erzeugendensystem von Im(F )) zwei Vektoren als

Basis von Im(F ), nämlich diejenigen die Pivotelemente in M̃(F ) haben:

⇒ BIm(F ) =


1

3
2

 ,

1
1
0


Beispiel 4:
Gegeben: F : R3 → R2 ist gegeben durch die folgende Matrix:

M(F ) =

(
1 2 3
4 5 6

)
Gesucht: Bestimme die Basen von ker(F ) und Im(F ).

M(F ) =

(
1 2 3
4 5 6

)
(ii)−l21(i)
 

(
1 2 3
0 −3 −6

)
(i)− 2

−3
(ii)

 

(
1 0 −1
0 −3 −6

)
=: M̃(F )

Um die dim(ker(F )) zu finden benutzen wir die Dimensionsformel:

dim(R3) = dim(ker(F )) + dim(Im(F ))

⇔ dim(ker(F )) = dim(R3)− dim(Im(F ))

⇔ dim(ker(F )) = 3− 2

= 1

dim(Im(F )) = rang(F ) = rang(M(F )) = 2 können wir direkt von M̃(F ) ablesen.
Dank der Dimensionsformel wissen, wir das die Basis vom Kern F einen Basisvektor
enthält.

⇒ ker(F ) = ker(M(F )) =


x1x2
x3

∣∣∣∣∣∣
 1
−2
1

 · x3, x3 ∈ R3


= span


x1x2
x3

∣∣∣∣∣∣
 1
−2
1



⇒ Basis vom ker(F ) ist zum Beispiel : Bker(F ) =


 1
−2
1


Für das Bild Im(F ) wissen wir wegen der Bemerkung von oben:

Im(F ) = span

{(
1
4

)
,

(
2
5

)
,

(
3
6

)}
Wähle aus den Spalten von M(F ) (Erzeugendensystem von Im(F )) zwei Vektoren als

Basis von Im(F ), nämlich diejenigen die Pivotelemente in M̃(F ) haben:

⇒ BIm(F ) =

{(
1
4

)
,

(
2
5

)}
7



Abbildungsmatrix (darstellende Matrix; Spezialfall mit Standardbasis)
Gegeben: V,W ein Vektorraum, F : (V,A) → (W,B), v 7→ F (v) und Basis von V mit
A = {a1, ..., an} und die Standardbasis von W mit B = {b1, ..., bm}
Gesucht: MA

B (F )

1. Berechne für jeden Basisvektor F (ai), i ∈ {1, ..., n}

2. Erstelle MA
B (F ) = (F (a1), ..., F (an)︸ ︷︷ ︸

n-Spalten

) } m-Zeilen.

Wir haben die Abbildungsmatrix von F erhalten, wobei der Definitionsbereich
bezüglich A und Bildbereich bezüglich B gegeben ist.

Beispiel 5:
Sei F = d

dt
: P2 → P1, p 7→ ṗ = dp

dt
.

(i) Zu zeigen: F ist eine lineare Abbildung.

Beweis: ∀a, b ∈ P2, λ ∈ E :

F (a+ λb) =
d

dt
(a+ λb)

=
d

dt
a+ λ

d

dt
b

= F (a) + λF (b) �

(ii) Finde die Abbildungsmatrix MB
B (F ) bezüglich der Monombasis B = {1, t, t2}.

p = λ0 + λ1t+ λ2t
2 ∈ P2, p =∧

λ0λ1
λ2

 ∈ E3

ṗ = λ1 + 2λ2t ∈ P1, ṗ =∧

 λ1
2λ2
0

 ∈ E3

1 =∧ e1

t =∧ e2

t2 =∧ e3

ṗ(1) =∧ ṗ(e1) =

0
0
0

 , ṗ(t) =∧ ṗ(e2) =

1
0
0

 , ṗ(t2) =∧ ṗ(e3) =

0
2
0


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=⇒ MB
B (F ) =

0 1 0
0 0 2
0 0 0


Bemerkung.
Ein Polynom p ∈ Pn ist durch die Funktionswerte p(xi) an n+ 1 paarweise verschiedenen
Punkten xi ∈ {1, ..., n} eindeutig bestimmt.

Bemerkung.
Seien V, U,W E-Vektorräume mit dim(V ) = n, dim(U) = k und dim(W ) = `, dann ist
die Dimensionsregel für Verknüpfungen von linearen Abbildungen:

M(f) ∈ R`×n, M(g) ∈ Rk×` ⇒ M(g ◦ f) = M(g) ·M(f) ∈ (”Rk×` ·R`×n”) = Rk×n

3 Basiswechsel, Koordinatentransformation

Definition.
Seien A = (e1, ..., en) die kanonische Basis vom Vektorraum V und B = (b1, ..., bn) eine
weitere Basis von V beschrieben mit der kanonischen Basis. Dann existiert eine Trans-
formationsmatrix mit:

TB
A = (b1| · · · |bn) mit ei = TB

A bi, i ∈ {1, ..., n}.

VA VB
TA
B

Bemerkung.
Es gilt die folgende Rechenregel: TA

B = (TB
A )−1

Mit der obigen Definition erhalten wir somit: TA
B ei = bi, i ∈ {1, ..., n}.

Satz.
Sei E ein Körper, V ein E-Vektorraum mit dim(V ) = n < ∞. Seien v ∈ V , A =
{a1, ..., an}, B = {b1, ..., bn} Basen für V . Dann existieren eindeutige λ1, ..., λn ∈ E sowie
eindeutige µ1, ..., µn ∈ E, so dass

v =
n∑

k=1

λkak =
n∑

k=1

µkbk.

Da stellt sich die Frage wie man zwischen den Basen A und B wechseln kann, konkret
hat man zum Beispiel die Abbildungsmatrix bezüglich A gegeben und möchte nun die
Abbildungsmatrix bezüglich B darstellen.

Definition.
Zu jeder Basis B = {v1, ..., vn} von V gibt es genau einen Isomorphismus:

φB : En → V, (x1, ..., xn) 7→ φB(x1, ..., xn) =
n∑

k=1

xkvk = x1v1+ ...+xnvn mit φB(ei) = vi.

(In Worten: φB ordnet x seinen Koordinaten bezüglich der Basis B zu.)
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Definition.
Seien V mit Basis A = {v1, ..., vm} und W mit Basis B = {w1, ..., wn} Vektorräume über
E. Dann gibt es zu jeder linearen Abbildung f : V → W genau eine Matrix MA

B (f), so
dass MA

B (f)j = f(vj) = a1jw1 + ...+ amjwm für j = 1, ..., n.

Bemerkung.
Die Matrix MA

B (f) von oben hat als j-te Spalte den Vektor der Koordinaten von f(vj)
bezüglich der Basis B.

Bemerkung. (Wichtig)
In den Spalten einer Abbildungsmatrix stehen die Bilder der Basisvektoren, d.h. MA

B (f) =
(f(v1)| · · · |f(vm)).

Bemerkung.
Die Matrix MA

B (f) kann mit Hilfe des kommutierenden Diagramms auch foglendermassen
beschrieben werden:

MA
B (f) = φ−1B ◦ f ◦ φA

Em En

V W

MA
B (f)

φA φB

f

Definition.
Die reguläre Transformationsmatrix TAB mit Basen A = {v1, ..., vn}, B = {w1, ..., wn} vom
Vektorraum V sieht wie folgt aus:

TAB = φ−1B φA =

t11 · · · t1n
...

...
tn1 · · · tnn

 ,
En En

V

φA

TA
B

φB

Dadurch kann man nun folgend beschreiben wi = t1iv1+...+tnivn = TAB vi, i ∈ {1, ..., n},
wobei wi bezüglich B und vi bezüglich A dargestellt ist:

TAB vA = wB, wobei vA =

v1...
vn

 bzgl. A, wB =

w1
...
wn

 bzgl. B.

Rechenregeln.

• TAA = 1

• TAB = (TBA)−1

• λA ∈ Kn ein Koordinatenvektor bezüglich A
µB ∈ Kn ein Koordinatenvektor bezüglich B
⇒ TAB λA = µB

• f : V → V linear mit Abbildungsmatrix MA
A (f) wobei der Definitionsbereich und

der Bildbereich bezüglich A gegeben ist. Analog ist die Abbildungsmatrix MB
B (f)

im Definitionsbereich und im Bildbereich bezüglich B gegeben. Wir erreichen eine
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Basistransformation von A nach B der Abbildungsmatrix MA
A (f) mit den Transfor-

mationsmatrizen TB
A , T

A
B :

MB
B (f) = TA

BM
A
A (f)TB

A

En En

V V

En En

TB
A

MB
B (f)

φB φB

f

φA

MA
A (f)

φA

TA
B

• f : V → V linear mit Abbildungsmatrix MB1
B2

(f) wobei der Definitionsbereich
bezüglich B1 und der Bildbereich bezüglich B2 gegeben ist. Analog ist die Abbil-

dugnsmatrixM
B′1
B′2

(f) im Definitionsbereich bezüglichB′1 und im Bildbereich bezüglich

B′2 gegeben. Wir erreichen eine Basistransformation von B1 nach B′1 (Definitions-
bereich) bzw. von B2 nach B′2 (Bildbereich) der Abbildungsmatrix MB1

B2
(f) mit den

Transformationsmatrizen TB2

B′2
, T

B′1
B1

:

M
B′1
B′2

(f) = TB2

B′2
MB1

B2
(f)T

B′1
B1

En En

V V

En En

φB′1

T
B′1
B1

M
B′1
B′2

(f)

φB′2
f

φB1

M
B1
B2

(f)

T
B2
B′2

φB2

Transformationsmatrix
Gegeben: A = (a1, ..., an), B = (b1, ..., bn) sind Basen von V.
Gesucht: Transformationsmatrix TA

B und TB
A .

( )B A ⇔ ( )b1 · · · bn a1 · · · an ”Gaussen” ohne Zeilenvertauschung
 · · · ( )1 TA

B

( )A B ⇔ ( )a1 · · · an b1 · · · bn ”Gaussen” ohne Zeilenvertauschung
 · · · ( )1 TB

A

Bemerkung. (Intuition)

( )B A  

( )
BB−1︸ ︷︷ ︸

1

AB−1︸ ︷︷ ︸
=TA

B
 ( )1 TA

B
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Beispiel 5:

Gegeben: A =


1

1
0

 ,

1
0
1

 ,

0
1
1

 ,B =


3

3
4

 ,

1
2
3

 ,

3
4
5


Gesucht: TA

B , T
B
A

( )3 1 3 1 1 0
3 2 4 1 0 1
4 3 5 0 1 1

(ii)−l21(i)
 

( )3 1 3 1 1 0
0 1 1 0 −1 1
4 3 5 0 1 1

(iii)−l31(i)
 

( )3 1 3 1 1 0
0 1 1 0 −1 1
0 5

3
1 −4

3
−1

3
1

(iii)−l32(ii)
 

( )3 1 3 1 1 0
0 1 1 0 −1 1
0 0 −2

3
−4

3
4
3
−2

3

(iii)·− 3
2 

( )3 1 3 1 1 0
0 1 1 0 −1 1
0 0 1 2 −2 1

(ii)−(iii)
 

( )3 1 3 1 1 0
0 1 0 −2 1 0
0 0 1 2 −2 1

(i)−3·(iii)
 

( )3 1 0 −5 7 −3
0 1 0 −2 1 0
0 0 1 2 −2 1

(i)−(ii)
 

( )3 0 0 −3 6 −3
0 1 0 −2 1 0
0 0 1 2 −2 1

(i)· 1
3 

( )1 0 0 −1 2 −1
0 1 0 −2 1 0
0 0 1 2 −2 1

=⇒ TA
B =

−1 2 −1
−2 1 0
2 −2 1


Bemerkung.
TB
A = (TA

B )−1 könnt ihr entweder mit dem Rezept von oben berechnen oder ihr benützt
das Rezept aus der 3. Übungsstunde und berechnet die Inverse (TA

B )−1 = TB
A .

Beispiel 6:
Sei V = P mit Basen B = {1, x, x2} Standardbasis (Monombasis) und A = {a1, a2, a3}
mit

a1 = x2

a2 = (x+ 1)2 = x2 + 2x+ 1

a3 = (x− 1)2 = x2 − 2x+ 1

a) TA
B , T

B
A ?

b) Sei F = d
dt

: P2 → P1, p 7→ ṗ = dp
dt

mit Abbildungsmatrix

M(F ) = MB
B (F ) =

0 1 0
0 0 2
0 0 0

.

Was ist MA
A (F )?

c) Sei p(x) = 3x2 − 8x+ 2 ∈ P2. Was sind die Koordinaten von p bezüglich A und B?
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a) Da B die Standardbasis ist, gilt: TA
B = (a1|a2|a3) =

0 1 1
0 2 −2
1 1 1


TB
A = (TA

B )−1 :( )0 1 1 1 0 0
0 2 −2 0 1 0
1 1 1 0 0 1

Zeilenvertauschungen
 

( )1 1 1 0 0 1
0 1 1 1 0 0
0 2 −2 0 1 0

(iii)−l32(ii)
 

( )1 1 1 0 0 1
0 1 1 1 0 0
0 0 −4 −2 1 0

(ii)− 1
−4

(iii)
 

( )1 1 1 0 0 1
0 1 0 1

2
1
4

0
0 0 −4 −2 1 0

(i)− 1
−4

(iii)
 

( )1 1 0 −1
2

1
4

1
0 1 0 1

2
1
4

0
0 0 −4 −2 1 0

(i)−(ii)
 

( )1 0 0 −1 0 1
0 1 0 1

2
1
4

0
0 0 −4 −2 1 0

− 1
4
(iii)
 

( )1 0 0 −1 0 1
0 1 0 1

2
1
4

0
0 0 1 1

2
−1

4
0

⇒ TB
A = (TA

B )−1 =

−1 0 1
1
2

1
4

0
1
2
−1

4
0


b) Unter Verwendung der Rechenregel erhalten wir:

MA
A (F ) = TB

AM
B
B (F )TA

B

=

−1 0 1
1
2

1
4

0
1
2
−1

4
0

0 1 0
0 0 2
0 0 0

0 1 1
0 2 −2
1 1 1

 =

 0 −2 2
1
2

3
2
−1

2

−1
2

1
2

3
2


c) Koordinaten von p bezüglich B:

pB =

 2
−8
3

 .

Koordinaten von p bezüglich A:

pA = TB
A pB =

 1
−1
3

 .

Test: a1 − a2 + 3a3 = 3x2 − 8x+ 2 = p(x) X

Definition.
Zwei Matrizen A,B ∈ Em×n heissen äquivalent, wenn es S ∈ Em×m und T ∈ En×n gibt
mit:

B = SAT−1

Falls m = n nennen wir A,B ∈ Em×n ähnlich, wenn es ein S ∈ Em×m gibt mit:

B = SAS−1.
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