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1 Skalarprodukt

Definition. Eine Abbildung B : E" x E" — I, (v,w) — B(v,w) heisst Bilinearfrom
(BLF) auf E", falls die Linearitét in beiden Argumenten erfiillt ist: Vu,v,w € E™, VA €
E:

e B(u+v,w) = B(u,w) + B(v,w), B(Au,v) = AB(u,v)
e B(u,v+w) = B(u,v) + B(u,w), B(u,\v) = AB(u,v).

Definition.
B eine BLF die auf R abbildet, heisst symmetrisch, falls B(v,w) = B(w,v) und al-
ternierend, falls B(v,w) = —B(w,v), fur Yv,w € E™.

Definition. Eine Abbildung B : E" x E" — E, (v,w) — B(v,w) heisst sesquilinear
auf IE", falls die Linearitat im zweiten Argumente erfiillt ist und im ersten Argument
semilinear ist: Vu,v,w € ", VA € I:

e B(u+v,w) = B(u,w) + B(v,w), B(\u,v)=AB(u,v)
e B(u,v+w) = B(u,v) + B(u,w), B(u,\v) = AB(u,v).

Definition.
B eine BLF die auf C abbildet, heisst hermitesch, falls B(v, w) = B(w,v).

Definition.
Sei B eine BLF die auf C abbildet, heisst positiv definit, wenn

B(v,v) >0 fiir jedes v € E" mit v # 0.

Bemerkung.
Eine symmetrische, positiv definite BLF heisst euklidisches Skalarprodukt.

Definition.
Ein Skalarprodukt ist eine Abbildung (-,-) : E"XE" — E, (v, w) — (v,w) =Y ,_, Tpwy,
so dass: Yu,v,w € E™" VA € E:

(i) (v+ A w,u) = (v,u) + Mw,u) (Bilinearitit bzw. Sesquilinearitit)
(i) (v,w) = (w,v) (symmetrie bzw. hermitesch)
(iii) (v,v) > 0 und (v,v) = 0 < v =0 (positiv semidefinit)

Definition.
Die Lange oder euklidische Norm eines Vektors x € IE" ist die nichtnegative reelle Zahl
||z|| definiert durch

||| :== \/(w,x) = Vallz =

Bemerkung.
Sei z,y € E", a € E, dann gilt:

(z,y) = l[z[l[y]l cos().



Definition.
Sei B = {b;};cs eine Basis von V| (-, -) Skalarprodukt auf V.

e B3 heisst orthogonal & (b, b)) =0,VE #£1
In Worten: Basisvektoren ”stehen L aufeinander”.
1, k=1
0, k#I
In Worten: Basisvektoren "stehen | aufeinander” und haben Lange 1.

e B3 heisst orthonormal (ONB) < (b, b)) = 0 =

Bemerkung.

Sei V' ein Vektorraum mit Skalarprodukt (-,-), B = {b;},c; Basis von V. Per Definition
von Basis kann man jedes v € V' schreiben als v = Ziel a;b;. Falls B eine ONB ist, so ist
a; = (b,v), Viel,

= Koordinaten von v beziiglich B sind (b;, v).

2 Das aussere Produkt und die orthogonale Projec-
tion

Bemerkung.
e innere Produkt: Vz,y € E": (,y) =28y e E
e iussere Produkt: Vo € E™,Vy € " :  ayf € Emxn

Satz.
Die orthogonale Projektion Pyx von x € ™ auf die durch y und Ursprung induzierte

Gerade ist: .

ly

(i) y-Richtung: Prx=ay, a€E
(Pyx ist ein Punkt auf y).

(ii) x-Richtung: (z — Pyz) L y.

Y
Iyl

H

Pyx = ||2yny =uu" r mit u :=

Bemerkung. Projektionsmatriz

H

o Ho TR
° Pyx.—Wyy T =uu xmltu.—%

lyll
e PH = Py (symmetrisch/hermitesch)

e P2 = Py (idempotent; dies ich eine alternative Definition von einer Projektion)



3 Gram-Schmidt Verfahren

Satz.
Zu jedem Vektorraum endlicher oder zumindest abzahlbarer Dimension existiert einen
ONB. (d.h. ist konstruierbar mit Gram-Schmidt)

Gram-Schmidt Verfahren
Sei V' ein euklidischer/unitérer Vektorraum mit dim(V') =n < oo
Gegeben: W = span{vy, ..., v, } C V, {v;}7*, Basis von W ist linear unabhéngig
Gesucht 1: wy, ..., w,, so dass W = span{wy, ..., w,,} und {w;}™; ONB von W ist or-
thonormal
Gesucht 2: wyq, ..., Wy, Wi, -y Wy, s0 dass V' = spanf{wy, ..., w,} und {w;}™; ONB von
V' ist orthonormal.

Low = 2 mit o] = (v, v1) = WO = {w}

floall
2. fir k € {2,...,m}
e Wihle v € V' \ span{W*-1}

k—1
o wy=v— > (v,w)w; =v— (v, w)w — ... = (v, Wp—1)Wk—1
=1
!
o w, = IIZZII mit [|w) || = \/{wl, w})

b W(k) = W(k_l) U {wk} - {U)l? ) wk}
3. WM ist eine ONB fiir W.

4. Falls man W zu eine ONB von V erweitern will:
Firke{m+1,..,n}

e Wihle v € V \ span{W*-1}

k—1
o uf=v— Y (v, wu,
=1

’
Wi

* wy = mit [[wi]| = /(wy, wy)

!
[

o WH =Wk y fw,}
5. W™ ist eine ONB fiir V.



Beispiel 1:
1

Gegeben: Vektorraum P, iiber R mit Skalarprodukt (p,q)p = [ p(t)g(t)dt und Monom-
1

basis B = {1,t,t*}. Hier: V=W =P,
Gesucht: Eine ONB die beziiglich (-, -)p orthogonal ist =  wir miissen 1, ¢, t* beziiglich
(-,-)p orthonormieren.

Losung:
1.
Lo L e =y [ = va
wy = = —, Wwel = —
1l v2 e .
1
:W(l)—{—
V2
2. k=2:
/ 1.1
w2:t—<t,—2>—2
1
1
Zt—/ t-—dt
-1 2
1 1
-]
2v2 |4
=t—0
= ¢
1 1 7
Wo Z\/jt weil It = /tht: [_t3:| N
el 1 7 =3
1 3
V2' V2
3. k=3:
1.1 3 3
wh = = (P, =)= — (4 504/ 5t
1 [t 3 [t /3
:tz——/ — - 2dt — —t/ \/jt.ﬁdt
V21 V2 2 J4V2
1 1
SN N e
V2 3v2 | V2 |Vaa |
1
=2 _2_9
3
:t2—%
: 45 1 1 1 t5 2t2 ¢ 1
w3 u,]?’ = —(t2——) weil ||w§||7;=/(t2——)2dt:{———+_} _
fwil ~ VS 73 L3 570 o),

1 /4 1
w® — {E’ \/gt, g(tz — §)} ist ONB fir P,.
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4 QR-Zerlegung

Bemerkung.
Sei A € E™". Angenommen rang(A) = n < m (voller Rang). Dann existiert eine

orthogonale/unitire (Matrix Q = (Q1|Q,) mit Q € E™™ Q, € E™", Q, € E™*(m—n)
und es existiert eine rechte Dreiecksmatrix By, € E™*" und mit 0 € E(m~™*" 5o dass

A=Q- (Rl =: QR
0
Bemerkung
Da (f(?), ist A= QR = Q1R1~
Bemerkung.(Zusammenhang QR-Zerlegung und kleinste Quadrate)

Fiir das Residuum r gilt, dann r = y — > {(q;, y)q, wobei {¢;}?_, sie Spalten von @
i=1

bezeichnet.
Bemerkung.
Falls das betrachtete Skalarprodukt das Standard-Skalarprodukt ist, gilt:
Qi Q1 =1
Arx =y Al Q1Riz=vy
& Rz = QMy

o =R'Qy

Fiir ein anderes Skalarprodukt erggibt sich eine andere Fromel fiir !



fh

Let’ ok

QR-Zerlegung
Gegeben: A € E™*™ m > n, (-, ) ein Skalarprodukt
Gesucht: @1, Ry, so dass A = Q1 R;.

Q1: Seien ay, ..., a, Spalten von A. Wende Gram-Schmidt Verfahren beziiglich (-, -) auch
{a;}, an. Das liefert dann {qi, ..., g, }.

= (Ch "qn> = Ql € pmxn
R1: 1.
0, 1>
rij = § (@ a;), 1<
||(Z||: \/<(7i7fqvi>7 1=
wobei ¢; den i-ten orthogonalisierten, aber noch nicht normierten Vektor beze-
ichnet.
2. Ry = (rij)i<ij<n

Beispiel 2:

Gegeben:
0 1 2
A=|1 3|, = m=3>2=n, y=|2
2 =2 4

Gesucht: Bestimme mit Hilfe der QR-Zerlegung = = (21, z5)7, so dass ||r||3 = ||y — Az]|;
minimal ist beziiglich dem Standard-Skalarprodukt (z,y) = xfy.

Losung:



(Q1)

0
Q= o1 1
ol ~ V5 5

¢ = as — <Q1,a2 q1

7(2)()()
)

o 15 (2 (2
p=i=r=z——= |16 | =—=| 16
g2l 5v/345 \ g 345 \ _g

5
) E
R
V5 V345
(R1)
rin = [las]| = V5
N 11,75 5 S
ro = @2l = | z=(| 16 16 |)] = ==(25+ 256+ 64)
55 25
—8 —8
0 1 .
ri2={q,a2)=({1],] 3 |)=——
2 —2 V5
7‘21:0
V5 —L
5
= A=



T 345 \25 80 —40

_i117 26
_69516

1 [(2+434+104
T 69 \10+32—32

_ 1 (140
69\ 10

Korollar 10.10 (Eigenwerte werden spéter definiert)
Die 2-Norm- Konditonszahl (kurz: Kondition) einer Matrix A € E"*™ ist gegeben durch

1 (5 85 130

N————
= DN DN

max{|w|}
R = ———71">
min{|w|}

wobei w der Eigenwert von A ist.

Insbesondere ist die Konditionszahl immer grosser oder gleich 1.

Bemerkung.
Wir mochten immer eine moglichst kleine Kondition haben, da dann die Implementierung
numerisch am stabilsten ist, d.h. grosse Kondition ist schlecht und unerwiinscht.

Bemerkung.
Die QR-Zerlegung ist fiir m > n und Rang(A) = n eindeutig, wenn man die Vorzeichen
der Diagonalelemente von der Dreiecksmatrix vorgibt.

Normalengleichung vs. QR-Zerlegung
Normalengleichung

Pro: e "schon” um von Hand zu rechnen

o A A ist hermitesch positiv definit = kann fiir Cholesky-Zerlegung ausgenutzt
werden



Con: e Wenn A schlecht Konditioniert ist, ist A¥ A quadratisch schlecht konditioniert.
= Cholesky liefert unbrauchbare Resultate (Rundungsfehler massiv verstérkt,
Implementiereung instabil)

QR-Zerlegung

Pro: e kann numerisch stabil implementiert werden (Verfahren héngt weniger von der
Kondition ab)

e () ist Projektion der Spalten von A

Con: e "hésslich” zum von Hand rechnen (Wurzeln)
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