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1 Skalarprodukt

Definition. Eine Abbildung B : En × En → E, (v, w) 7→ B(v, w) heisst Bilinearfrom
(BLF) auf En, falls die Linearität in beiden Argumenten erfüllt ist: ∀u, v, w ∈ En, ∀λ ∈
E:

• B(u+ v, w) = B(u,w) +B(v, w), B(λu, v) = λB(u, v)

• B(u, v + w) = B(u, v) +B(u,w), B(u, λv) = λB(u, v).

Definition.
B eine BLF die auf R abbildet, heisst symmetrisch, falls B(v, w) = B(w, v) und al-
ternierend, falls B(v, w) = −B(w, v), für ∀v, w ∈ En.

Definition. Eine Abbildung B : En × En → E, (v, w) 7→ B(v, w) heisst sesquilinear
auf En, falls die Linearität im zweiten Argumente erfüllt ist und im ersten Argument
semilinear ist: ∀u, v, w ∈ En, ∀λ ∈ E:

• B(u+ v, w) = B(u,w) +B(v, w), B(λu, v) = λB(u, v)

• B(u, v + w) = B(u, v) +B(u,w), B(u, λv) = λB(u, v).

Definition.
B eine BLF die auf C abbildet, heisst hermitesch, falls B(v, w) = B(w, v).

Definition.
Sei B eine BLF die auf C abbildet, heisst positiv definit, wenn

B(v, v) > 0 für jedes v ∈ En mit v 6= 0.

Bemerkung.
Eine symmetrische, positiv definite BLF heisst euklidisches Skalarprodukt.

Definition.
Ein Skalarprodukt ist eine Abbildung 〈·, ·〉 : En×En → E, (v, w) 7→ 〈v, w〉 =

∑n
k=1 vkwk

so dass: ∀u, v, w ∈ En, ∀λ ∈ E:

(i) 〈v + λw, u〉 = 〈v, u〉+ λ〈w, u〉 (Bilinearität bzw. Sesquilinearität)

(ii) 〈v, w〉 = 〈w, v〉 (symmetrie bzw. hermitesch)

(iii) 〈v, v〉 ≥ 0 und 〈v, v〉 = 0⇔ v = 0 (positiv semidefinit)

Definition.
Die Länge oder euklidische Norm eines Vektors x ∈ En ist die nichtnegative reelle Zahl
‖x‖ definiert durch

‖x‖ :=
√
〈x, x〉 =

√
xHx =

√√√√ n∑
k=1

|xk|2.

Bemerkung.
Sei x, y ∈ En, α ∈ E, dann gilt:

〈x, y〉 = ‖x‖ ‖y‖ cos(α).
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Definition.
Sei B = {bi}i∈I eine Basis von V , 〈·, ·〉 Skalarprodukt auf V .

• B heisst orthogonal ⇔ 〈bk, bl〉 = 0,∀k 6= l
In Worten: Basisvektoren ”stehen ⊥ aufeinander”.

• B heisst orthonormal (ONB) ⇔ 〈bk, bl〉 = δkl =

{
1, k = l

0, k 6= l

In Worten: Basisvektoren ”stehen ⊥ aufeinander” und haben Länge 1.

Bemerkung.
Sei V ein Vektorraum mit Skalarprodukt 〈·, ·〉, B = {bi}i∈I Basis von V . Per Definition
von Basis kann man jedes v ∈ V schreiben als v =

∑
i∈I αibi. Falls B eine ONB ist, so ist

αi = 〈bi, v〉, ∀i ∈ I,
⇒ Koordinaten von v bezüglich B sind 〈bi, v〉.

2 Das äussere Produkt und die orthogonale Projec-

tion

Bemerkung.

• innere Produkt: ∀x, y ∈ En : 〈x, y〉 = xHy ∈ E

• äussere Produkt: ∀x ∈ Em,∀y ∈ En : xyH ∈ Em×n

Satz.
Die orthogonale Projektion PY x von x ∈ En auf die durch y und Ursprung induzierte
Gerade ist:

PY x :=
1

‖y‖2
yyHx = uuHx mit u :=

y

‖y‖

(i) y-Richtung: PY x = αy, α ∈ E
(PY x ist ein Punkt auf y).

(ii) x-Richtung: (x− PY x) ⊥ y.

Bemerkung. Projektionsmatrix

• PY x := 1
‖y‖2yy

Hx = uuHx mit u := y
‖y‖

• PH
Y = PY (symmetrisch/hermitesch)

• P 2
Y = PY (idempotent; dies ich eine alternative Definition von einer Projektion)
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3 Gram-Schmidt Verfahren

Satz.
Zu jedem Vektorraum endlicher oder zumindest abzählbarer Dimension existiert einen
ONB. (d.h. ist konstruierbar mit Gram-Schmidt)

Gram-Schmidt Verfahren
Sei V ein euklidischer/unitärer Vektorraum mit dim(V ) = n <∞
Gegeben: W = span{v1, ..., vm} ⊂ V, {vi}mi=1 Basis von W ist linear unabhängig
Gesucht 1: w1, ..., wm so dass W = span{w1, ..., wm} und {wi}mi=1 ONB von W ist or-
thonormal
Gesucht 2: w1, ..., wm, wm+1, ..., wn so dass V = span{w1, ..., wn} und {wi}ni=1 ONB von
V ist orthonormal.

1. w1 = v1
‖v1‖ mit ‖v1‖ =

√
〈v1, v1〉 ⇒ W (1) = {w1}

2. für k ∈ {2, ...,m}

• Wähle v ∈ V \ span{W (k−1)}

• w′k = v −
k−1∑
i=1

〈v, wi〉wi = v − 〈v, w1〉w1 − ...− 〈v, wk−1〉wk−1

• wk =
w′

k

‖w′
k‖

mit ‖w′k‖ =
√
〈w′k, w′k〉

• W (k) = W (k−1) ∪ {wk} = {w1, ..., wk}

3. W (m) ist eine ONB für W .

4. Falls man W (m) zu eine ONB von V erweitern will:
Für k ∈ {m+ 1, ..., n}

• Wähle v ∈ V \ span{W (k−1)}

• w′k = v −
k−1∑
i=1

〈v, wi〉wi

• wk =
w′

k

‖w′
k‖

mit ‖w′k‖ =
√
〈w′k, w′k〉

• W (k) = W (k−1) ∪ {wk}

5. W (n) ist eine ONB für V .
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Beispiel 1:

Gegeben: Vektorraum P2 über R mit Skalarprodukt 〈p, q〉P =
1∫
−1
p(t)q(t)dt und Monom-

basis B = {1, t, t2}. Hier: V = W = P2

Gesucht: Eine ONB die bezüglich 〈·, ·〉P orthogonal ist ⇒ wir müssen 1, t, t2 bezüglich
〈·, ·〉P orthonormieren.

Lösung :

1.

w1 =
1

‖1‖P
=

1√
2
, weil ‖1‖P =

√∫ 1

−1
1dt =

√
2

⇒ W (1) =

{
1√
2

}
2. k = 2 :

w′2 = t− 〈t, 1√
2
〉 1√

2

= t−
∫ 1

−1
t · 1√

2
dt

= t−
[

1

2
√

2
t2
]1
−1

= t− 0

= t

w2 =
t

‖t‖P
=

√
3

2
t weil ‖t‖P =

√∫ 1

−1
t2dt =

√[
1

3
t3
]1
−1

=

√
2

3

W (2) =

{
1√
2
,

√
3

2
t

}

3. k = 3 :

w′3 = t2 − 〈t2, 1√
2
〉 1√

2
− 〈t2,

√
3

2
t〉
√

3

2
t

= t2 − 1√
2

∫ 1

−1

1√
2
· t2dt−

√
3

2
t

∫ 1

−1

√
3

2
t · t2dt

= t2 − 1√
2

[
1

3
√

2
t3
]1
−1
−
√

3

2
t

[√
3

2

1

4
t4

]1
−1

= t2 − 1

3
− 0

= t2 − 1

3

w3 =
w′3
‖w′3‖P

=

√
45

8
(t2−1

3
) weil ‖w′3‖P =

∫ 1

−1
(t2−1

3
)2dt =

[
t5

5
− 2t2

9
+
t

9

]1
−1

=
8

45

W (3) =

{
1√
2
,

√
3

2
t,

√
45

8
(t2 − 1

3
)

}
ist ONB für P2.
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4 QR-Zerlegung

Bemerkung.
Sei A ∈ Em×n. Angenommen rang(A) = n ≤ m (voller Rang). Dann existiert eine
orthogonale/unitäre (Matrix Q = (Q1|Q2) mit Q ∈ Em×m, Q1 ∈ Em×n, Q2 ∈ Em×(m−n)

und es existiert eine rechte Dreiecksmatrix R1 ∈ En×n und mit 0 ∈ E(m−n)×n, so dass

A = Q ·
(
R1

0

)
=: QR

Bemerkung

Da

(
R1

0

)
, ist A = QR = Q1R1.

Bemerkung.(Zusammenhang QR-Zerlegung und kleinste Quadrate)

Für das Residuum r gilt, dann r = y −
n∑

i=1

〈qi, y〉qi, wobei {qi}ni=1 sie Spalten von Q

bezeichnet.

Bemerkung.
Falls das betrachtete Skalarprodukt das Standard-Skalarprodukt ist, gilt:

QH
1 Q1 = 1

Ax = y
A=Q1R1⇐⇒ Q1R1x = y

⇔ R1x = QH
1 y

⇔ x = R−11 QH
1 y

Für ein anderes Skalarprodukt erggibt sich eine andere Fromel für x!
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QR-Zerlegung
Gegeben: A ∈ Em×n, m > n, 〈·, ·〉 ein Skalarprodukt
Gesucht: Q1, R1, so dass A = Q1R1.

Q1: Seien a1, ..., an Spalten von A. Wende Gram-Schmidt Verfahren bezüglich 〈·, ·〉 auch
{ai}ni=1 an. Das liefert dann {q1, ..., qn}.
⇒ (q1 |...|qn) = Q1 ∈ Em×n

R1: 1.

rij =


0, i > j

〈qi, aj〉, i < j

‖q̃i‖ =
√
〈q̃i, q̃i〉, i = j

wobei q̃i den i-ten orthogonalisierten, aber noch nicht normierten Vektor beze-
ichnet.

2. R1 = (rij)1≤i,j≤n

Beispiel 2:
Gegeben:

A =

0 1
1 3
2 −2

 , ⇒ m = 3 > 2 = n, y =

2
2
4


Gesucht: Bestimme mit Hilfe der QR-Zerlegung x = (x1, x2)

T , so dass ‖r‖22 = ‖y − Ax‖22
minimal ist bezüglich dem Standard-Skalarprodukt 〈x, y〉 = xHy.

Lösung :

7



(Q1)

q1 =
a1
‖a1‖

=
1√
5

0
1
2


q̃2 = a2 − 〈q1, a2〉q1

=

 1
3
−2

− 1√
5

1√
5
〈

0
1
2

 ,

 1
3
−2

〉
0

1
2


=

 1
3
−2

− 1

5
· (−1) ·

0
1
2


=

 1
16
5

−8
5


=

1

5

 5
16
−8


q2 =

q̃2
‖q̃2‖

=
1

5

5√
345

 5
16
−8

 =
1√
345

 5
16
−8


⇒ Q1 =

 0 5√
345

1√
5

16√
345

2√
5

−8√
345


(R1)

r11 = ‖a1‖ =
√

5

r22 = ‖q̃2‖ =

1

5

1

5
〈

 5
16
−8

 ,

 5
16
−8

〉
 1

2

=

(
1

25
(25 + 256 + 64)

) 1
2

=

√
345

5

r12 = 〈q1, a2〉 = 〈

0
1
2

 ,

 1
3
−2

〉 = − 1√
5

r21 = 0

⇒ R1 =

(√
5 − 1√

5

0
√
345
5

)
⇒ A = Q1R1
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Ax = y ⇒ Q1R1x = y

⇔ R1x = QT
1 y

⇔ x = R−11 QT
1 y

R−11 =

√
5√

345

(√
345
5

1√
5

0
√

5

)

QT
1 =

(
0 1√

5
2√
5

5√
345

16√
345

−8√
345

)

x =

(√
345
5

1√
5

0
√

5

)(
0 1√

5
2√
5

5√
345

16√
345

−8√
345

)2
2
4


=

(
5

345
85
345

130
345

25
345

80
345
− 40

345

)2
2
4


=

1

345

(
5 85 130
25 80 −40

)2
2
4


=

1

69

(
1 17 26
5 16 −8

)2
2
4


=

1

69

(
2 + 34 + 104
10 + 32− 32

)
=

1

69

(
140
10

)
Korollar 10.10 (Eigenwerte werden später definiert)
Die 2-Norm-Konditonszahl (kurz: Kondition) einer MatrixA ∈ En×n ist gegeben durch

κ2 =
max{|ω|}
min{|ω|}

,

wobei ω der Eigenwert von A ist.
Insbesondere ist die Konditionszahl immer grösser oder gleich 1.

Bemerkung.
Wir möchten immer eine möglichst kleine Kondition haben, da dann die Implementierung
numerisch am stabilsten ist, d.h. grosse Kondition ist schlecht und unerwünscht.

Bemerkung.
Die QR-Zerlegung ist für m ≥ n und Rang(A) = n eindeutig, wenn man die Vorzeichen
der Diagonalelemente von der Dreiecksmatrix vorgibt.

Normalengleichung vs. QR-Zerlegung
Normalengleichung

Pro: • ”schön” um von Hand zu rechnen

• AHA ist hermitesch positiv definit⇒ kann für Cholesky-Zerlegung ausgenutzt
werden
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Con: • Wenn A schlecht Konditioniert ist, ist AHA quadratisch schlecht konditioniert.
⇒ Cholesky liefert unbrauchbare Resultate (Rundungsfehler massiv verstärkt,
Implementiereung instabil)

QR-Zerlegung

Pro: • kann numerisch stabil implementiert werden (Verfahren hängt weniger von der
Kondition ab)

• Q ist Projektion der Spalten von A

Con: • ”hässlich” zum von Hand rechnen (Wurzeln)
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