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1 Symmetrische Gruppe

Definition.
Eine Permutation ist eine bijektive Abbildung:

p:A{l,..,n}—{1,..,n}

Definition.
Die Menge aller Permutationen heisst symmetrische Gruppe S,.

Definition.
Eine Permutation, welche nur zwei Elemente vertauscht heisst Transposition.

Satz
Jede Permutation kann als Produkt (hintereinanderschaltung von Abbildungen) von Trans-
positionen geschrieben werden.

Bemerkung.

Die Darstellung einer Permutation als Produkt von Transpositionen ist nicht eindeutig.
Aber die Anzahl benétigter Transpositionen ist eindeutigerweise entweder gerade oder
ungerade.

Definition.
Ist p € S, so nennt man jedes Paar i,j € {1,...,n} mit

i<j aber p(i)>p(j),
einen Fehlstand von p.

Beispiel 1:
Gegeben:

Gesucht: Fehlstdnde von p

Losung:
Es gibt insgesamt zwei Fehlstande, namlich

1<3,aber2>1 und 2<3, aber3 > 1.

Definition.
Das Signum einer Permutation ist definiert als

1, falls p eine gerade Anzahl k von Fehlstanden hat

sign(p) = (—1)" = {

—1, falls p eine ungerade Anzahl k von Fehlstdnden hat.

Definition.
Man nennt p € S,:

e gerade, falls sign(p) = +1,
e ungerade, falls sign(p) = —1.



2 Determinanten

Definition.
Die Determinante ist eine Abbildung:

det : E™" - £

A det(A) = Z sign(p) - H Qip(3)
=1

PESn

Bemerkung.
In der obigen Definition summieren wir iiber n! Summanden.

Tricks um Determinanten zu berechnen.
e 1 x I-Matrix:  det(aj;) = |a11| = an

e 2 X 2-Matirx:
a b

a b
dt( d)_cd

e 3 x 3-Matrix (Regel von Sarrus):

’:ad—bc

a b ¢

a b c
det |d e f|l|=|d e f|=aei+bfg+ cdh — gec— hfa—idb
g h 1

g h 1

Es wird das folgende Muster bei der Regel von Sarrus angewendet:

+++
\\\
\\\

Bemerkung.

Fir eine n X n-Matrix kann man die Determinante tiber die Definition mit Permutationen

berechnen, aber ist sehr ineffizient (Aufwand proportional zu n!).

Satz.

Sei A die Zeilenstufenform von A (d.h. A ist eine obere/untere Dreiecksmatrix), welche
man durch den Gauss-Algorithmus aus A berechnet hat. Sei k € INy die Anzahl aus-

gefiihrter Zeilenvertauschungen:

= det(A) = (—1)* - det(A ﬁ Ay,

wobei H 11“ das Produkt der Diagonaleintrage ist.

i=1



Satz. Laplace’sche Entwicklungssatz
Sei A € E™™ und Aj; € E"""*"*! die Streichmatrix ohne i-te Zeile und j-te Spalte.

= Entwicklung nach der i-ten Zeile: det(A) = Z(—l)”j - aj; - det(A};)
j=1

n

= Entwicklung nach der j-ten Spalte: det(A) = Z(—l)”j - aj - det(Aj;).

i=1
Beispiel 2:
Gegeben:
1 2 0
A=1|3 -1 0
1 0 5
Gesucht: det(A)
Losung:
(1) Sarrus:
det(A)=1-(-1)-+2-0-1+0-3-0—-1-(-1)-0—-0-0-1—-5-3-2
=—-5—-5-3-2
=—-5—-30
=-35
(2) Gauss:
e ohne Zeilenvertauschung
120“1'120“‘5'120~
3 -1 0] 0 =7 o) Y0 —7 0] =A
1 0 5 1 0 5 0 0 5
= det(A) = det(A)
1-(=7)-5
=-35
e mit Zeilenvertauschung
120241 h105”l.105
3 -1 0 ezenveﬁgusc ung 3 -1 0 (22)131-(1) 0 -1 —15
1 0 5 1 2 0 1 2 0
,Al4105 “l‘}105
W0 o 1 15| O o -1 —15) = A
0 2 -5 0 0 =35



(3) Laplace:
(i) Entwicklung nach der letzten Spalten (am effizientesten):

2

1 0

S N

1 0 5
=5((-1)-1-3-2)
=5-(=7)
—-35

(ii) Entwicklung nach der ersten Zeile (dient nur zur Illustration, da ineffizient):

1 2 0
3 10 :1-“01 g‘—2ﬁ g'
1 0 5
=1-(-1)-5-2-3-5
=-5-130
= —35

Satz. Axiomatischer Zugang, Figenschaften der Determinante.

Die Abbildung

det : E™" — &
A det(A)

heisst Determinante, falls folgende Eigenschaften gelten: Sei A € E™*" eine quadratische
Matrix, dann gilt:

(D1) det(1) =1
(D2) Hat A zwei gleiche oder lineare abhéngige Zeilen/Spalten, so ist
det(A) =0

(D3) Linearitit in jeder Zeile/Spalte (in der Literatur auch n-Linearitdt genannt)
det(vy, ..., \v; + w, ..., v,) = Mdet(vy, ..., V4, ..., v,) + det(vy, ..., w, ..., v,)

Die Determinante hat folgende weitere Eigenschaften, die sich aus den ersten Drei
herleiten lassen:

(D4) det(AA) = A™ det(A) fir alle A € E
(D5) Ist eine Zeile/Spalte gleich Null, so ist:
det(A) =0

(D6) Vertauscht man zwei Zeilen/Spalten von A, so é&ndert sich das Vorzeichen von
det(A):

det(vy, ..., Uiy ooy U, ooy Uy) = —det(v1, oo, U, ooy 4y oy Up)

>



(D7) Entsteht B aus A durch Addition des A-fachen (A # 0) der i-ten zur j-ten Zeile/S-
palte, dann ist:
det(A) = det(B)

(D8) Ist A eine obere/untere Dreiecksmatrix, so ist:

n

det(A) = H (077

1=1

A= (Al A2> so ist: det(A) = det(A;) - det(As)

und analog gilt:

det 0 | =det(By) - ... - det(By)
: .. L %
0 --- 0 B,

(D14) det(A) = [ \i, wobei A; ein Eigenwert von A ist.

=1

(D15) Definition der Determinante ist Basisinvariant:

det(B) = det(S™'BS) =

- det(B) - det(S)

det(.S)
(D16) Orthogonale/unitére Matrizen A haben:
det(A) = +1,
weil det(AAT) = det(A)det(A")
= det(A)det(A)
= det(A)?
= det(1) = 1

(D17) Fiir hermitesche Matrizen (A# = A) haben wir:

det(A) € R,
weil det(A”) = det(A")
= det(A)
= det(A)
= det(A)



Satz.
e det(A) = 0 < A nicht invertierbar < rang(A) < n
e Ax = b eindeutig losbar < det(A) # 0.

Definition.
Zu jedem Element ay; einer n x n-Matrix A werde die (n —1) x (n — 1)-Untermatrix Ap
definiert durch Streichen der Zeile k£ und der Kolonne [ von A. Der Kofaktor ki von ay
ist dann die Zahl:

Rgl ‘= (—1)k+l det (A[k,l]) .

3 Eigenwerte und Eigenvektoren

Sei in diesem Abschnitt V' ein Vektorraum iiber E, dim(V) =n < oo, A € E™*".
Definition.

e )\ € I heisst Figenwert (EW)von A <  JueV\{0}: Av= ).
v € V '\ {0} heisst dann Figenvektor (EV) von A zum Eigenwert .

E\(A) = {v € V|Av = v} heisst Eigenraum von A zum Eigenwert \.

o(A) :={\| X Eigenwerte von A} heisst Spektrum von A.

Bemerkung.
E\(A) =ker(A — A1) ist ein nichttrivialer Untervektorraum von V', d.h. es gilt:

{0} € E\(A) (echt grosser als nur der Nullraum)

Bemerkung.
Diese Definition lésst sich analog fiir eine lineare Abbildung F' : V' — V fiihren. Es
gilt:

A ist ein Eigenwert von F, v ist ein Eigenvektor von#

&< A ist ein Eigenwert von A, v ist ein Eigenvektor von A,

wobei A die Abbildungsmatrix von F' bezeichnet.

Bemerkung. Herleitung des charakteristischen Polynoms x 4.
Betrachte

Av=X & Av—-— ) v=0
& (A=A)v=0 (1)

v =016st (1), aber v = 0 ist als Eigenvektor nicht zugelassen. Wir fordern mehr Lésungen,
d.h. oo viele Losungen (da ein LGS immer 0, 1 oder oo viele Losungen hat). Geméss dem

Satz aus der Erinnerung konnen wir dies , indem wir det(A — A1) =0 setzen, weil

Satz

det(A—A1)=0 &  A— Al singuldr
=

(A — A1)v = 0 hat oo viele Losungen, da v = 0 nicht zugelassen ist.
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Definition.
Xa(A) = det(A — A1) heisst charakteristisches Polynom.

Bemerkung.
e xa(A\) hat Grad n

e ) ist der Eigenwert von A
< )\ ist eine Nullstelle (NST) des charakteristischen Polynoms y 4 ()\).

Bemerkung. Mitternachtsformel (auswendig)

ar’ +bxr+c=0

—b+ Vb —4dac
2a

= T12 =

fh

Let’ ok

Berechnung von Eigenwerten und Eigenvektoren

Gegeben: A € E"*"

(falls F': V — V lineare Abbildung gegeben ist, finde zuerst die Abbildungsmatrix A)
Gesucht: o(A) (d.h. V Eigenwerte von A), F)\(A) mit VA € o(A)

1) Berechne y4(A) = det(A — A1)
2) Setze xa(A) =0

= n Nullstellen A\, ..., \,
= O'(A) = {)\1, 7)\n}

Bemerkung. A, ..., A\, sind nicht zwingend verschieden, sondern mit Nullstellenvielfach-
heit gezahlt.

3) Fiir jeden verschiedenen Eigenwert \; bestimme die Basis von E), (A) = ker(A — A1)
mit Hilfe von der Gauss-Elimination.

4) Die Menge der Eigenvektoren ist

span {U Basis von Ej, (A)} \ {0}

(Wir vereinigen alle Eigenrdume minus den Nullvektor)



Beispiel 3:
Gegeben:

1
A= 14
0

Gesucht: Eigenwerte, Eigenvektoren von A

o w N
TN W
v

Losung:

1)
Xa(A) = det(A — A1)

1-X) 2 3)
=det| 4 (3-x) 2

0 0 (5-A)

Xa(\) =0
& —A=5)2A+1)=0
= AM=X=5 (Spéter: algebraische Vielfachheit von 5 ist 2)
A3 =—1
= o(A) ={5,-1}



4) Menge der Eigenvektoren:

1 1 0
span 21,1 -1 \ 0
0 0 0

Bemerkung.

Es wire mathematisch unprézis in Beispiel 3 zu sagen: ”Die Eigenvektoren sind (1,2, 0)7
und (1,—1,0)"”. Denn es gibt co viele Eigenvektoren.

Sei zum Beispiel v ein Eigenvektor von A zum Eigenwert A, d.h. Av = \v

= c- v ist ein Eigenvektor von A zu A fiir alle ¢ € E, da auch A(cv) = A(cv) gilt.

Meist geniigt es trotzdem, einen Basisvektor: v € E)(A)\ {0} als "représentativen Eigen-
vektor zu nehmen.

4 Spektralzerlegung, Diagonalisierbarkeit

Definition.
Sei A ein Eigenwert von A € E™*™,

o Algebraische Vielfachheit von A:

ay := "Nullstellen vielfachheit von A in x4(\)”

o Geometische Vielfachheit:

gx = dim(E\(A4))
= dim(ker(A — A1))
=n —rang(A — A1)

Definition.
A heisst diagonalisierbar (es existiert eine Spektralzerlegung)

& AV e BV, A e E™", mit V reguldr, A diagonal, so dass
A=VAV!

Man sagt auch: ” A ist @hnlich zu einer Diagonalmatrix”.

Satz.

A ist diagonalisierbar

< Die Eigenvektoren von A bilden eine Basis von V'
< Fir alle Eigenwerte A von A gilt g, = a,.

Bemerkung.
Eine Diagonalisiertung ist ein Basiswechsel mit Transformationsmatrizen V und V1.

Satz.
Bei Ahnlichkeitstransformation bleibt erhalten:

e Eigenwerte und deren algebraische und geometrische Vielfachheit

10



e Rang

Determinante

e Spur

Charakteristische Polynom y 4 (%)

nicht die Eigenvektoren!

fh

Let’ ok

Berechnung der Diagonalmatrix
Gegeben: A € E™*" diagonalisierbar
Gesucht: V, A € E™*™

1) Finde die Eigenwerte Ay, ..., A, und finde die dazugehorigen Eigenvektoren vy, ..., v,
von A (wobei v; € Ey,(A) und {v;}_; linear unabhéngig).

2) Definiere die Diagonalmatrix wie folgt:

M O - 0
0o . . .
A= mit A\ > ... >\,
R
0 -+ 0 \,

3) Schreibe die Eigenvektoren v; € E),(A) in eine Matrix:

V= (o)

4) Test: A Z VAV

Beispiel 3: fortgesetzt...
Sei

1 2 3

A=14 3 2

0 0 5

wie in Beispiel 1 mit x4(A) = —(A — 5)*(A + 1)

Gesucht: Algebraische und geometrische Vielfachheit
Losung:

e Algebraische Vielfachheit:

AM=bmitas =2 und A =-—-1mit a_; =1

11



o Geometrische Vielfachheit:

g5 = dim(E5(4)) =1
g1 = dlm(E_l(A)) =1

Da g5 # a5 = A ist nicht diagonalisierbar.

12



Beispiel 4:

Gegeben:
0 -1 1
A=|-3 -2 3
-2 -2 3

Gesucht: Finde die Spektralzerlegung.

Losung:

()

Xa(A) =det(A — A1)
A -1 1
=|-3 —2—X\ 3
—2 -2 3=
= M=2-XNMB-XN)+(-1)-3-(=2)+1-(=3)-(=2)
—(=2) - (=2=2) - 1=(=2)-3- (=) =B =A) - (=3) - (1)
=6A 307 =22 2 = A3+ 6+6—4 -2\ — 6\ — 9+ 3\
=N+ +A-1

Bemerkung. Hier miisst ihr ein Trick verwenden, indem ihr die Nullstelle erratet
(teste: 1,—1,2,—2, etc.) und dann eine Polynomdivision durchfiihrt.

A1 = 1 ist eine Nullstelle: (- 4+24+t-1):(t—1)= —t*+1
t3_t2
t—1
—t+1
0

= xaN) = A -=1(1+1)
=—(A—=172*A\+1)

xa(\) =0
S0=—-A-1>*0\+1)
= M=X=1, a1=2
AM=—-1, a1 =1
= o(A)={-11}

13



-1 -1 1
=ker | -3 -3 3
-2 =2 2
. ) -1 -1 1 1
Gz wer [ 00 0 0] =spand | —1
0 0 0 0
= g1=2
L] )\3 = —1
E_1(A) =ker(A+1)
1 -1 1
=ker [ -3 -1 3
-2 =2 4
. . 1 -1 1
U ker [0 —4 6
0 —4 6
e 1 -1 1
G rer [0 2 -3 = span
0 0 0
= ga=1
e a1 = gy und a_; = g_1 = A ist diagonalisierbar.
(iv) Menge der Eigenvektoren:
1 1 1
span —-11,101],13
0 1 2
2)
10 0
A=1(0 1 0
0 0 —1
3)
e TR
V=|(-103], vi'i=[-1 -1 2],
N Loy

wobei ihr die Inverse V~! mit dem {iblichen Rezept berechnet.

4) Test: A=VAVly

14



Bemerkung.

Komplexwertige Nullstellen des Charakteristischen Polynoms mit reellen Koeffizienten
treten immer paarweise auf, und zwar ist mit A\ € C auch X\ eine Nullstelle. Somit muss
eine orthogonale Matrix von ungerader Dimension mindestens einen reellen Eigenwert +1
besitzen.

Defiinition.
Die Summe der Diagonalelemente von A € E"*™ nennt man Spur von A:

n

spur(A) := Z Qji = A1 + oo F G-
i=1

Lemma 9.6
Eine (quadratische) Matrix A ist genau dann singulér, wenn sie 0 als Eigenwert hat:

Asinguar <  0€o0(A).

Satz 9.11
Eigenvektoren zu verschiedenen Eigenwerten sind linear unabhéngig.

Korollar 9.12
Sind die n Eigenwerte von F' : V' — V (mit n = dim(V")) verschieden, so gibt es eine Basis
von Eigenvektoren und die entsprechende Abbildungsmatrix ist diagonal.

Satz 9.15
Ist A € C™*™ hermitesch, so gilt:

(i) Alle Eigenwerte Ay, ..., A, sind reell.

(ii) Die Eigenvektoren zu verschiedenen Eigenwerten sind paarweise orthogonal in C.
(iii) Es gibt eine orthonormale Basis des C™ aus Eigenvektoren uy, ..., u, von A.
)

(iv) Fir die unitdre Matrix U := (uq, ..., u,) gilt:

U AU = A = diag(\, ..., \y).
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