
Lineare Algebra
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1 Symmetrische Gruppe

Definition.
Eine Permutation ist eine bijektive Abbildung:

p : {1, ..., n} → {1, ..., n}

Definition.
Die Menge aller Permutationen heisst symmetrische Gruppe Sn.

Definition.
Eine Permutation, welche nur zwei Elemente vertauscht heisst Transposition.

Satz
Jede Permutation kann als Produkt (hintereinanderschaltung von Abbildungen) von Trans-
positionen geschrieben werden.

Bemerkung.
Die Darstellung einer Permutation als Produkt von Transpositionen ist nicht eindeutig.
Aber die Anzahl benötigter Transpositionen ist eindeutigerweise entweder gerade oder
ungerade.

Definition.
Ist p ∈ Sn, so nennt man jedes Paar i, j ∈ {1, ..., n} mit

i < j aber p(i) > p(j),

einen Fehlstand von p.

Beispiel 1:
Gegeben:

p =

[
1 2 3
2 3 1

]
Gesucht: Fehlstände von p

Lösung :
Es gibt insgesamt zwei Fehlstände, nämlich

1 < 3, aber 2 > 1, und 2 < 3, aber 3 > 1.

Definition.
Das Signum einer Permutation ist definiert als

sign(p) = (−1)k =

{
1, falls p eine gerade Anzahl k von Fehlständen hat

−1, falls p eine ungerade Anzahl k von Fehlständen hat.

Definition.
Man nennt p ∈ Sn:

• gerade, falls sign(p) = +1,

• ungerade, falls sign(p) = −1.
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2 Determinanten

Definition.
Die Determinante ist eine Abbildung:

det : En×n → E

A 7→ det(A) =
∑
p∈Sn

sign(p) ·
n∏
i=1

aip(i)

Bemerkung.
In der obigen Definition summieren wir über n! Summanden.

Tricks um Determinanten zu berechnen.

• 1× 1-Matrix: det(a11) = |a11| = a11

• 2× 2-Matirx:

det

(
a b
c d

)
=

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc

• 3× 3-Matrix (Regel von Sarrus):

det

a b c
d e f
g h i

 =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = aei+ bfg + cdh− gec− hfa− idb

Es wird das folgende Muster bei der Regel von Sarrus angewendet:

a b c a b

d e f d e

g h i g h

+ + +

− − −

Bemerkung.
Für eine n×n-Matrix kann man die Determinante über die Definition mit Permutationen
berechnen, aber ist sehr ineffizient (Aufwand proportional zu n!).

Satz.
Sei Ã die Zeilenstufenform von A (d.h. Ã ist eine obere/untere Dreiecksmatrix), welche
man durch den Gauss-Algorithmus aus A berechnet hat. Sei k ∈ N0 die Anzahl aus-
geführter Zeilenvertauschungen:

⇒ det(A) = (−1)k · det(Ã) = (−1)k
n∏
i=1

Ãii,

wobei
n∏
i=1

Ãii das Produkt der Diagonaleinträge ist.
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Satz. Laplace’sche Entwicklungssatz
Sei A ∈ En×n und A′ij ∈ En−1×n−1 die Streichmatrix ohne i-te Zeile und j-te Spalte.

⇒ Entwicklung nach der i-ten Zeile: det(A) =
n∑
j=1

(−1)i+j · aij · det(A′ij)

⇒ Entwicklung nach der j-ten Spalte: det(A) =
n∑
i=1

(−1)i+j · aij · det(A′ij).

Beispiel 2:
Gegeben:

A =

1 2 0
3 −1 0
1 0 5


Gesucht: det(A)

Lösung :

(1) Sarrus:

det(A) = 1 · (−1) ·+2 · 0 · 1 + 0 · 3 · 0− 1 · (−1) · 0− 0 · 0 · 1− 5 · 3 · 2
= −5− 5 · 3 · 2
= −5− 30

= −35

(2) Gauss:

• ohne Zeilenvertauschung1 2 0
3 −1 0
1 0 5

 (ii)−l21·(i)
 

1 2 0
0 −7 0
1 0 5

 (iii)−l31·(i)
 

1 2 0
0 −7 0
0 0 5

 =: Ã

⇒ det(A) = det(Ã)

= 1 · (−7) · 5
= −35

• mit Zeilenvertauschung1 2 0
3 −1 0
1 0 5

 Zeilenvertauschung
 

1 0 5
3 −1 0
1 2 0

 (ii)−l21·(i)
 

1 0 5
0 −1 −15
1 2 0


(ii)−l31·(i)
 

1 0 5
0 −1 −15
0 2 −5

 (ii)−l23·(i)
 

1 0 5
0 −1 −15
0 0 −35

 =: Ã

⇒ det(A) = (−1) · det(Ã)

= (−1) · [1 · (−1) · (−35)]

= −35
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(3) Laplace:

(i) Entwicklung nach der letzten Spalten (am effizientesten):∣∣∣∣∣∣
1 2 0
3 −1 0
1 0 5

∣∣∣∣∣∣ = 5 ·
∣∣∣∣1 2
3 −1

∣∣∣∣
= 5((−1) · 1− 3 · 2)

= 5 · (−7)

= −35

(ii) Entwicklung nach der ersten Zeile (dient nur zur Illustration, da ineffizient):∣∣∣∣∣∣
1 2 0
3 −1 0
1 0 5

∣∣∣∣∣∣ = 1 ·
∣∣∣∣−1 0

0 5

∣∣∣∣− 2 ·
∣∣∣∣3 0
1 5

∣∣∣∣
= 1 · (−1) · 5− 2 · 3 · 5
= −5− 30

= −35

Satz. Axiomatischer Zugang, Eigenschaften der Determinante.
Die Abbildung

det : En×n → E

A 7→ det(A)

heisst Determinante, falls folgende Eigenschaften gelten: Sei A ∈ En×n eine quadratische
Matrix, dann gilt:

(D1) det(1) = 1

(D2) Hat A zwei gleiche oder lineare abhängige Zeilen/Spalten, so ist

det(A) = 0

(D3) Linearität in jeder Zeile/Spalte (in der Literatur auch n-Linearität genannt)

det(v1, ..., λvi + w, ..., vn) = λdet(v1, ..., vi, ..., vn) + det(v1, ..., w, ..., vn)

Die Determinante hat folgende weitere Eigenschaften, die sich aus den ersten Drei
herleiten lassen:

(D4) det(λA) = λn det(A) für alle λ ∈ E

(D5) Ist eine Zeile/Spalte gleich Null, so ist:

det(A) = 0

(D6) Vertauscht man zwei Zeilen/Spalten von A, so ändert sich das Vorzeichen von
det(A):

det(v1, ..., vi, ..., vj, ..., vn) = −det(v1, ..., vj, ..., vi, ..., vn)
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(D7) Entsteht B aus A durch Addition des λ-fachen (λ 6= 0) der i-ten zur j-ten Zeile/S-
palte, dann ist:

det(A) = det(B)

(D8) Ist A eine obere/untere Dreiecksmatrix, so ist:

det(A) =
n∏
i=1

aii

(D9) det(AB) = det(A)det(B)

(D10) det(A) = det(A)

(D11) det(A−1) = 1
det(A)

(D12) det(AT ) = det(A)

(D13) Ist

A =

(
A1 A2

0 A3

)
so ist: det(A) = det(A1) · det(A3)

und analog gilt:

det


B1 ∗ · · · ∗
0

. . . . . .
...

...
. . . . . . ∗

0 · · · 0 Bn

 = det(B1) · ... · det(Bn)

(D14) det(A) =
n∏
i=1

λi, wobei λi ein Eigenwert von A ist.

(D15) Definition der Determinante ist Basisinvariant :

det(B) = det(S−1BS) =
1

det(S)
· det(B) · det(S)

(D16) Orthogonale/unitäre Matrizen A haben:

det(A) = ±1,

weil det(AAT ) = det(A)det(AT )

= det(A)det(A)

= det(A)2

!
= det(1) = 1

(D17) Für hermitesche Matrizen (AH = A) haben wir:

det(A) ∈ R,

weil det(AH) = det(A
T

)

= det(A)

= det(A)

!
= det(A)
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Satz.

• det(A) = 0⇔ A nicht invertierbar ⇔ rang(A) < n

• Ax = b eindeutig lösbar ⇔ det(A) 6= 0.

Definition.
Zu jedem Element akl einer n×n-Matrix A werde die (n− 1)× (n− 1)-Untermatrix A[k,l]

definiert durch Streichen der Zeile k und der Kolonne l von A. Der Kofaktor κkl von akl
ist dann die Zahl:

κkl := (−1)k+l det
(
A[k,l]

)
.

3 Eigenwerte und Eigenvektoren

Sei in diesem Abschnitt V ein Vektorraum über E, dim(V ) = n <∞, A ∈ En×n.

Definition.

• λ ∈ E heisst Eigenwert (EW) von A ⇔ ∃v ∈ V \ {0} : Av = λv.

• v ∈ V \ {0} heisst dann Eigenvektor (EV) von A zum Eigenwert λ.

• Eλ(A) = {v ∈ V |Av = λv} heisst Eigenraum von A zum Eigenwert λ.

• σ(A) := {λ | λ Eigenwerte von A} heisst Spektrum von A.

Bemerkung.
Eλ(A) =ker(A− λ1) ist ein nichttrivialer Untervektorraum von V , d.h. es gilt:

{0} ( Eλ(A) (echt grösser als nur der Nullraum)

Bemerkung.
Diese Definition lässt sich analog für eine lineare Abbildung F : V → V führen. Es
gilt:

λ ist ein Eigenwert von F, v ist ein Eigenvektor vonF

⇔ λ ist ein Eigenwert von A, v ist ein Eigenvektor von A,

wobei A die Abbildungsmatrix von F bezeichnet.

Bemerkung. Herleitung des charakteristischen Polynoms χA.
Betrachte

Av = λv ⇔ Av − λv = 0

⇔ (A− λ1)v = 0 (1)

v = 0 löst (1), aber v = 0 ist als Eigenvektor nicht zugelassen. Wir fordern mehr Lösungen,
d.h. ∞ viele Lösungen (da ein LGS immer 0, 1 oder∞ viele Lösungen hat). Gemäss dem

Satz aus der Erinnerung können wir dies , indem wir det(A− λ1)
!

= 0 setzen, weil

det(A− λ1) = 0
Satz⇔ A− λ1 singulär

⇒ (A− λ1)v = 0 hat ∞ viele Lösungen, da v = 0 nicht zugelassen ist.
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Definition.
χA(λ) = det(A− λ1) heisst charakteristisches Polynom.

Bemerkung.

• χA(λ) hat Grad n

• λ ist der Eigenwert von A
⇔ λ ist eine Nullstelle (NST) des charakteristischen Polynoms χA(λ).

Bemerkung. Mitternachtsformel (auswendig)

ax2 + bx+ c = 0

⇒ x1,2 =
−b±

√
b2 − 4ac

2a

Berechnung von Eigenwerten und Eigenvektoren
Gegeben: A ∈ En×n
(falls F : V → V lineare Abbildung gegeben ist, finde zuerst die Abbildungsmatrix A)
Gesucht: σ(A) (d.h. ∀ Eigenwerte von A), Eλ(A) mit ∀λ ∈ σ(A)

1) Berechne χA(λ) = det(A− λ1)

2) Setze χA(λ)
!

= 0:

⇒ n Nullstellen λ1, ..., λn

⇒ σ(A) = {λ1, ..., λn}

Bemerkung. λ1, ..., λn sind nicht zwingend verschieden, sondern mit Nullstellenvielfach-
heit gezählt.

3) Für jeden verschiedenen Eigenwert λk bestimme die Basis von Eλk(A) = ker(A−λk1)
mit Hilfe von der Gauss-Elimination.

4) Die Menge der Eigenvektoren ist

span

{⋃
k

Basis von Eλk(A)

}
\ {0}

(Wir vereinigen alle Eigenräume minus den Nullvektor)
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Beispiel 3:
Gegeben:

A =

1 2 3
4 3 2
0 0 5


Gesucht: Eigenwerte, Eigenvektoren von A

Lösung :

1)

χA(λ) = det(A− λ1)

= det

(1− λ) 2 3
4 (3− λ) 2
0 0 (5− λ)


= (1− λ)(3− λ)(5− λ)− (5− λ) · 4 · 2
= (5− λ)[(1− λ)(3− λ)− 4 · 2]

= (5− λ)[3− 3λ− λ+ λ2 − 8]

= (5− λ)[λ2 − 4λ− 5]

= (5− λ)(λ− 5)(λ+ 1) (allenfalls mit Hilfe der Mitternachtsformel)

= −(λ− 5)(λ− 5)(λ+ 1)

= −(λ− 5)2(λ+ 1)

2)

χA(λ)
!

= 0

⇔ −(λ− 5)2(λ+ 1) = 0

⇒ λ1 = λ2 = 5 (Später: algebraische Vielfachheit von 5 ist 2)

λ3 = −1

⇒ σ(A) = {5,−1}

3) • λ1 = λ2 = 5:

E5(A) = ker(A− 5 · 1) = ker

−4 2 3
4 −2 2
0 0 0


”Gaussen”
 ker

2 −1 0
0 0 1
0 0 0

 = span


1

2
0


• λ3 = −1:

E−1(A) = ker(A− (−1) · 1) = ker

2 2 3
4 4 2
0 0 6


”Gaussen”
 ker

1 1 0
0 0 1
0 0 0

 = span


 1
−1
0


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4) Menge der Eigenvektoren:

span


1

2
0

 ,

 1
−1
0

 \

0

0
0


Bemerkung.
Es wäre mathematisch unpräzis in Beispiel 3 zu sagen: ”Die Eigenvektoren sind (1, 2, 0)T

und (1,−1, 0)T”. Denn es gibt ∞ viele Eigenvektoren.
Sei zum Beispiel v ein Eigenvektor von A zum Eigenwert λ, d.h. Av = λv
⇒ c · v ist ein Eigenvektor von A zu λ für alle c ∈ E, da auch A(cv) = λ(cv) gilt.
Meist genügt es trotzdem, einen Basisvektor: v ∈ Eλ(A)\{0} als ”repräsentativen Eigen-
vektor zu nehmen.

4 Spektralzerlegung, Diagonalisierbarkeit

Definition.
Sei λ ein Eigenwert von A ∈ En×n.

• Algebraische Vielfachheit von λ:

aλ := ”Nullstellen vielfachheit von λ in χA(λ)”

• Geometische Vielfachheit :

gλ := dim(Eλ(A))

= dim(ker(A− λ1))

= n− rang(A− λ1)

Definition.
A heisst diagonalisierbar (es existiert eine Spektralzerlegung)

⇔ ∃V ∈ En×n, Λ ∈ En×n, mit V regulär, Λ diagonal, so dass

A = V ΛV −1

Man sagt auch: ”A ist ähnlich zu einer Diagonalmatrix”.

Satz.
A ist diagonalisierbar
⇔ Die Eigenvektoren von A bilden eine Basis von V
⇔ Für alle Eigenwerte λ von A gilt gλ = aλ.

Bemerkung.
Eine Diagonalisiertung ist ein Basiswechsel mit Transformationsmatrizen V und V −1.

Satz.
Bei Ähnlichkeitstransformation bleibt erhalten:

• Eigenwerte und deren algebraische und geometrische Vielfachheit
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• Rang

• Determinante

• Spur

• Charakteristische Polynom χA(t)

• nicht die Eigenvektoren!

Berechnung der Diagonalmatrix
Gegeben: A ∈ En×n diagonalisierbar
Gesucht: V,Λ ∈ En×n

1) Finde die Eigenwerte λ1, ..., λn und finde die dazugehörigen Eigenvektoren v1, ..., vn
von A (wobei vi ∈ Eλi(A) und {vi}ni=1 linear unabhängig).

2) Definiere die Diagonalmatrix wie folgt:

Λ =


λ1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 λn

 mit λ1 ≥ ... ≥ λn

3) Schreibe die Eigenvektoren vi ∈ Eλi(A) in eine Matrix:

V = (v1|· · ·|vn)

4) Test: A
?
= V ΛV −1

Beispiel 3: fortgesetzt...
Sei

A =

1 2 3
4 3 2
0 0 5

 wie in Beispiel 1 mit χA(λ) = −(λ− 5)2(λ+ 1)

Gesucht: Algebraische und geometrische Vielfachheit

Lösung :

• Algebraische Vielfachheit:

λ1 = 5 mit a5 = 2 und λ2 = −1 mit a−1 = 1
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• Geometrische Vielfachheit:

g5 = dim(E5(A)) = 1 6= a5 = 2

g−1 = dim(E−1(A)) = 1 = a−1 = 1

Da g5 6= a5 ⇒ A ist nicht diagonalisierbar.
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Beispiel 4:
Gegeben:

A =

 0 −1 1
−3 −2 3
−2 −2 3


Gesucht: Finde die Spektralzerlegung.

Lösung :

1) (i)

χA(λ) = det(A− λ1)

=

∣∣∣∣∣∣
−λ −1 1
−3 −2− λ 3
−2 −2 3− λ

∣∣∣∣∣∣
= −λ(−2− λ)(3− λ) + (−1) · 3 · (−2) + 1 · (−3) · (−2)

− (−2) · (−2− λ) · 1− (−2) · 3 · (−λ)− (3− λ) · (−3) · (−1)

= 6λ+ 3λ2 − 2λ2 − λ3 + 6 + 6− 4− 2λ− 6λ− 9 + 3λ

= −λ3 + λ2 + λ− 1

Bemerkung. Hier müsst ihr ein Trick verwenden, indem ihr die Nullstelle erratet
(teste: 1,−1, 2,−2, etc.) und dann eine Polynomdivision durchführt.

λ1 = 1 ist eine Nullstelle:
(
− t3 + t2 + t− 1

)
:
(
t− 1

)
= − t2 + 1

t3 − t2

t− 1
− t + 1

0

⇒ χA(λ) = (λ− 1)(1 + λ2)

= −(λ− 1)2(λ+ 1)

(ii)

χA(λ)
!

= 0

⇔ 0 = −(λ− 1)2(λ+ 1)

⇒ λ1 = λ2 = 1, a1 = 2

λ3 = −1, a−1 = 1

⇒ σ(A) = {−1, 1}
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(iii) • λ1 = λ2 = 1:

E1(A) = ker(A− 1)

= ker

−1 −1 1
−3 −3 3
−2 −2 2


”Gaussen”
 ker

−1 −1 1
0 0 0
0 0 0

 = span


 1
−1
0

 ,

1
0
1


⇒ g1 = 2

• λ3 = −1:

E−1(A) = ker(A+ 1)

= ker

 1 −1 1
−3 −1 3
−2 −2 4


”Gaussen”
 ker

1 −1 1
0 −4 6
0 −4 6


”Gaussen”
 ker

1 −1 1
0 2 −3
0 0 0

 = span


1

3
2


⇒ g−1 = 1

=⇒ a1 = g1 und a−1 = g−1 ⇒ A ist diagonalisierbar.

(iv) Menge der Eigenvektoren:

span


 1
−1
0

 ,

1
0
1

 ,

1
3
2


2)

Λ =

1 0 0
0 1 0
0 0 −1


3)

V =

 1 1 1
−1 0 3
0 1 2

 , V −1 =

 3
2

1
2
−3

2

−1 −1 2
1
2

1
2
−1

2

 ,

wobei ihr die Inverse V −1 mit dem üblichen Rezept berechnet.

4) Test: A = V ΛV −1X
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Bemerkung.
Komplexwertige Nullstellen des Charakteristischen Polynoms mit reellen Koeffizienten
treten immer paarweise auf, und zwar ist mit λ ∈ C auch λ eine Nullstelle. Somit muss
eine orthogonale Matrix von ungerader Dimension mindestens einen reellen Eigenwert ±1
besitzen.

Defiinition.
Die Summe der Diagonalelemente von A ∈ En×n nennt man Spur von A:

spur(A) :=
n∑
i=1

aii = a11 + ...+ ann.

Lemma 9.6
Eine (quadratische) Matrix A ist genau dann singulär, wenn sie 0 als Eigenwert hat:

A singuär ⇔ 0 ∈ σ(A).

Satz 9.11
Eigenvektoren zu verschiedenen Eigenwerten sind linear unabhängig.

Korollar 9.12
Sind die n Eigenwerte von F : V → V (mit n = dim(V )) verschieden, so gibt es eine Basis
von Eigenvektoren und die entsprechende Abbildungsmatrix ist diagonal.

Satz 9.15
Ist A ∈ Cn×n hermitesch, so gilt:

(i) Alle Eigenwerte λ1, ..., λn sind reell.

(ii) Die Eigenvektoren zu verschiedenen Eigenwerten sind paarweise orthogonal in C.

(iii) Es gibt eine orthonormale Basis des Cn aus Eigenvektoren u1, ..., un von A.

(iv) Für die unitäre Matrix U := (u1, ..., un) gilt:

UHAU = Λ = diag(λ1, ..., λn).
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