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1 Eigenwerte und Eigenvektoren

Sei in diesem Abschnitt V ein Vektorraum über E, dim(V ) = n <∞, A ∈ En×n.

Definition.

• λ ∈ E heisst Eigenwert (EW) von A ⇔ ∃v ∈ V \ {0} : Av = λv.

• v ∈ V \ {0} heisst dann Eigenvektor (EV) von A zum Eigenwert λ.

• Eλ(A) = {v ∈ V |Av = λv} heisst Eigenraum von A zum Eigenwert λ.

• σ(A) := {λ | λ Eigenwerte von A} heisst Spektrum von A.

Bemerkung.
Eλ(A) =ker(A− λ1) ist ein nichttrivialer Untervektorraum von V , d.h. es gilt:

{0} ( Eλ(A) (echt grösser als nur der Nullraum)

Bemerkung.
Diese Definition lässt sich analog für eine lineare Abbildung F : V → V führen. Es
gilt:

λ ist ein Eigenwert von F, v ist ein Eigenvektor vonF

⇔ λ ist ein Eigenwert von A, v ist ein Eigenvektor von A,

wobei A die Abbildungsmatrix von F bezeichnet.

Bemerkung. Herleitung des charakteristischen Polynoms χA.
Betrachte

Av = λv ⇔ Av − λv = 0

⇔ (A− λ1)v = 0 (1)

v = 0 löst (1), aber v = 0 ist als Eigenvektor nicht zugelassen. Wir fordern mehr Lösungen,
d.h. ∞ viele Lösungen (da ein LGS immer 0, 1 oder∞ viele Lösungen hat). Gemäss dem

Satz aus der Erinnerung können wir dies , indem wir det(A− λ1)
!

= 0 setzen, weil

det(A− λ1) = 0
Satz⇔ A− λ1 singulär

⇒ (A− λ1)v = 0 hat ∞ viele Lösungen, da v = 0 nicht zugelassen ist.

Definition.
χA(λ) = det(A− λ1) heisst charakteristisches Polynom.

Bemerkung.

• χA(λ) hat Grad n

• λ ist der Eigenwert von A
⇔ λ ist eine Nullstelle (NST) des charakteristischen Polynoms χA(λ).
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Bemerkung. Mitternachtsformel (auswendig)

ax2 + bx+ c = 0

⇒ x1,2 =
−b±

√
b2 − 4ac

2a

Berechnung von Eigenwerten und Eigenvektoren
Gegeben: A ∈ En×n
(falls F : V → V lineare Abbildung gegeben ist, finde zuerst die Abbildungsmatrix A)
Gesucht: σ(A) (d.h. ∀ Eigenwerte von A), Eλ(A) mit ∀λ ∈ σ(A)

1) Berechne χA(λ) = det(A− λ1)

2) Setze χA(λ)
!

= 0:

⇒ n Nullstellen λ1, ..., λn

⇒ σ(A) = {λ1, ..., λn}

Bemerkung. λ1, ..., λn sind nicht zwingend verschieden, sondern mit Nullstellenvielfach-
heit gezählt.

3) Für jeden verschiedenen Eigenwert λk bestimme die Basis von Eλk(A) = ker(A−λk1)
mit Hilfe von der Gauss-Elimination.

4) Die Menge der Eigenvektoren ist

span

{⋃
k

Basis von Eλk(A)

}
\ {0}

(Wir vereinigen alle Eigenräume minus den Nullvektor)

Beispiel 1:
Gegeben:

A =

1 2 3
4 3 2
0 0 5


Gesucht: Eigenwerte, Eigenvektoren von A

Lösung :
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1)

χA(λ) = det(A− λ1)

= det

(1− λ) 2 3
4 (3− λ) 2
0 0 (5− λ)


= (1− λ)(3− λ)(5− λ)− (5− λ) · 4 · 2
= (5− λ)[(1− λ)(3− λ)− 4 · 2]

= (5− λ)[3− 3λ− λ+ λ2 − 8]

= (5− λ)[λ2 − 4λ− 5]

= (5− λ)(λ− 5)(λ+ 1) (allenfalls mit Hilfe der Mitternachtsformel)

= −(λ− 5)(λ− 5)(λ+ 1)

= −(λ− 5)2(λ+ 1)

2)

χA(λ)
!

= 0

⇔ −(λ− 5)2(λ+ 1) = 0

⇒ λ1 = λ2 = 5 (Später: algebraische Vielfachheit von 5 ist 2)

λ3 = −1

⇒ σ(A) = {5,−1}

3) • λ1 = λ2 = 5:

E5(A) = ker(A− 5 · 1) = ker

−4 2 3
4 −2 2
0 0 0


”Gaussen”
 ker

2 −1 0
0 0 1
0 0 0

 = span


1

2
0


• λ3 = −1:

E−1(A) = ker(A− (−1) · 1) = ker

2 2 3
4 4 2
0 0 6


”Gaussen”
 ker

1 1 0
0 0 1
0 0 0

 = span


 1
−1
0


4) Menge der Eigenvektoren:

span


1

2
0

 ,

 1
−1
0

 \

0

0
0


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Bemerkung.
Es wäre mathematisch unpräzis in Beispiel 1 zu sagen: ”Die Eigenvektoren sind (1, 2, 0)T

und (1,−1, 0)T”. Denn es gibt ∞ viele Eigenvektoren.
Sei zum Beispiel v ein Eigenvektor von A zum Eigenwert λ, d.h. Av = λv
⇒ c · v ist ein Eigenvektor von A zu λ für alle c ∈ E, da auch A(cv) = λ(cv) gilt.
Meist genügt es trotzdem, einen Basisvektor: v ∈ Eλ(A)\{0} als ”repräsentativen Eigen-
vektor zu nehmen.

2 Spektralzerlegung, Diagonalisierbarkeit

Definition.
Sei λ ein Eigenwert von A ∈ En×n.

• Algebraische Vielfachheit von λ:

aλ := ”Nullstellen vielfachheit von λ in χA(λ)”

• Geometische Vielfachheit :

gλ := dim(Eλ(A))

= dim(ker(A− λ1))

= n− rang(A− λ1)

Definition.
A heisst diagonalisierbar (es existiert eine Spektralzerlegung)

⇔ ∃V ∈ En×n, Λ ∈ En×n, mit V regulär, Λ diagonal, so dass

A = V ΛV −1

Man sagt auch: ”A ist ähnlich zu einer Diagonalmatrix”.

Satz.
A ist diagonalisierbar
⇔ Die Eigenvektoren von A bilden eine Basis von V
⇔ Für alle Eigenwerte λ von A gilt gλ = aλ.

Bemerkung.
Eine Diagonalisiertung ist ein Basiswechsel mit Transformationsmatrizen V und V −1.

Satz.
Bei Ähnlichkeitstransformation bleibt erhalten:

• Eigenwerte und deren algebraische und geometrische Vielfachheit

• Rang

• Determinante

• Spur

• Charakteristische Polynom χA(t)
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• nicht die Eigenvektoren!

Berechnung der Diagonalmatrix
Gegeben: A ∈ En×n diagonalisierbar
Gesucht: V,Λ ∈ En×n

1) Finde die Eigenwerte λ1, ..., λn und finde die dazugehörigen Eigenvektoren v1, ..., vn
von A (wobei vi ∈ Eλi(A) und {vi}ni=1 linear unabhängig).

2) Definiere die Diagonalmatrix wie folgt:

Λ =


λ1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 λn

 mit λ1 ≥ ... ≥ λn

3) Schreibe die Eigenvektoren vi ∈ Eλi(A) in eine Matrix:

V = (v1|· · ·|vn)

4) Test: A
?
= V ΛV −1

Beispiel 1: fortgesetzt...
Sei

A =

1 2 3
4 3 2
0 0 5

 wie in Beispiel 1 mit χA(λ) = −(λ− 5)2(λ+ 1)

Gesucht: Algebraische und geometrische Vielfachheit

Lösung :

• Algebraische Vielfachheit:

λ1 = 5 mit a5 = 2 und λ2 = −1 mit a−1 = 1

• Geometrische Vielfachheit:

g5 = dim(E5(A)) = 1 6= a5 = 2

g−1 = dim(E−1(A)) = 1 = a−1 = 1

Da g5 6= a5 ⇒ A ist nicht diagonalisierbar.
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Beispiel 2:
Gegeben:

A =

 0 −1 1
−3 −2 3
−2 −2 3


Gesucht: Finde die Spektralzerlegung.

Lösung :

1) (i)

χA(λ) = det(A− λ1)

=

∣∣∣∣∣∣
−λ −1 1
−3 −2− λ 3
−2 −2 3− λ

∣∣∣∣∣∣
= −λ(−2− λ)(3− λ) + (−1) · 3 · (−2) + 1 · (−3) · (−2)

− (−2) · (−2− λ) · 1− (−2) · 3 · (−λ)− (3− λ) · (−3) · (−1)

= 6λ+ 3λ2 − 2λ2 − λ3 + 6 + 6− 4− 2λ− 6λ− 9 + 3λ

= −λ3 + λ2 + λ− 1

Bemerkung. Hier müsst ihr ein Trick verwenden, indem ihr die Nullstelle erratet
(teste: 1,−1, 2,−2, etc.) und dann eine Polynomdivision durchführt.

λ1 = 1 ist eine Nullstelle:
(
− t3 + t2 + t− 1

)
:
(
t− 1

)
= − t2 + 1

t3 − t2

t− 1
− t + 1

0

⇒ χA(λ) = (λ− 1)(1 + λ2)

= −(λ− 1)2(λ+ 1)

(ii)

χA(λ)
!

= 0

⇔ 0 = −(λ− 1)2(λ+ 1)

⇒ λ1 = λ2 = 1, a1 = 2

λ3 = −1, a−1 = 1

⇒ σ(A) = {−1, 1}
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(iii) • λ1 = λ2 = 1:

E1(A) = ker(A− 1)

= ker

−1 −1 1
−3 −3 3
−2 −2 2


”Gaussen”
 ker

−1 −1 1
0 0 0
0 0 0

 = span


 1
−1
0

 ,

1
0
1


⇒ g1 = 2

• λ3 = −1:

E−1(A) = ker(A+ 1)

= ker

 1 −1 1
−3 −1 3
−2 −2 4


”Gaussen”
 ker

1 −1 1
0 −4 6
0 −4 6


”Gaussen”
 ker

1 −1 1
0 2 −3
0 0 0

 = span


1

3
2


⇒ g−1 = 1

=⇒ a1 = g1 und a−1 = g−1 ⇒ A ist diagonalisierbar.

(iv) Menge der Eigenvektoren:

span


 1
−1
0

 ,

1
0
1

 ,

1
3
2


2)

Λ =

1 0 0
0 1 0
0 0 −1


3)

V =

 1 1 1
−1 0 3
0 1 2

 , V −1 =

 3
2

1
2
−3

2

−1 −1 2
1
2

1
2
−1

2

 ,

wobei ihr die Inverse V −1 mit dem üblichen Rezept berechnet.

4) Test: A = V ΛV −1X
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Bemerkung.
Komplexwertige Nullstellen des Charakteristischen Polynoms mit reellen Koeffizienten
treten immer paarweise auf, und zwar ist mit λ ∈ C auch λ eine Nullstelle. Somit muss
eine orthogonale Matrix von ungerader Dimension mindestens einen reellen Eigenwert ±1
besitzen.

Defiinition.
Die Summe der Diagonalelemente von A ∈ En×n nennt man Spur von A:

spur(A) :=
n∑
i=1

aii = a11 + ...+ ann.

Lemma 9.6
Eine (quadratische) Matrix A ist genau dann singulär, wenn sie 0 als Eigenwert hat:

A singuär ⇔ 0 ∈ σ(A).

Satz 9.11
Eigenvektoren zu verschiedenen Eigenwerten sind linear unabhängig.

Korollar 9.12
Sind die n Eigenwerte von F : V → V (mit n = dim(V )) verschieden, so gibt es eine Basis
von Eigenvektoren und die entsprechende Abbildungsmatrix ist diagonal.

Satz 9.15
Ist A ∈ Cn×n hermitesch, so gilt:

(i) Alle Eigenwerte λ1, ..., λn sind reell.

(ii) Die Eigenvektoren zu verschiedenen Eigenwerten sind paarweise orthogonal in C.

(iii) Es gibt eine orthonormale Basis des Cn aus Eigenvektoren u1, ..., un von A.

(iv) Für die unitäre Matrix U := (u1, ..., un) gilt:

UHAU = Λ = diag(λ1, ..., λn).

3 Singulärwertzerlegung

Satz.
Sei A ∈ En×n symmetrisch (AT = A) oder hermitesch (AH = A

T
= AT = A), dann

gilt:

(i) A hat nur reelle Eigenwerte

(ii) Eigenvektoren zu verschiedenen Eigenwerten sind paarweise orthogonal

Bemerkung 1.
Um einen Orthonormalbasis aus Eigenvektoren einer symmetisch/hermiteschen Matrix
zu erhalten, muss man die Eigenvektoren nur normieren und gegebenenfalls mit Gram-
Schmidt orthogonalisieren (macht man falls es einen Eigenwert mit geometrischer Vielfach-
heit > 1 gibt).
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Satz. Singulärwertzerlegung
Sei A ∈ Em×n, rang(A) =: r ≤ min{m,n}. Dann existieren U ∈ Em×m orthogonal/unitär,
V ∈ En×n orthogonal/unitär, Σ ∈ Rm×n, wobei

Σ =

 Σr 0
0︸︷︷︸
r

0︸︷︷︸
n−r

 }
r}

m− r, mit Σr =


σ1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 σr

 , σ1 ≥ ... ≥ σr > 0

eine verallgemeinerte Diagonalmatrix mit Singulärwerten σ1, ..., σr ist, so dassA = UΣV H ,
d.h. A besitzt eine Singulärwertezerlegung.

Satz.
Sei A ∈ Em×n.

AHA = (UΣV H)HUΣV H

= V ΣH︸︷︷︸
=ΣT ;

UHU︸ ︷︷ ︸
=1n da U unitär

ΣV H

= V ΣTΣV H

⇒ AHA ist ähnlich zu (im Sinne von unitärer Spektralzerlegung) zu

ΣTΣ =



σ2
1 0 · · · 0 0 · · · 0

0
. . . . . .

...
...

...
...

. . . . . . 0
...

...
0 · · · 0 σ2

r 0 · · · 0
0 · · · · · · 0 0 · · · 0
...

...
...

...
0 · · · · · · 0 0 · · · 0


∈ Rn×n

⇒ σi =
√
λi, wobei λi die positiven reellen Eigenwerte von AHA sind.

Anwendung.

1) Die Singulärwertzerlegung ist gewissermassen eine Verallgemeinerung von der Spek-
tralzerlegung für Rechtecksmatrizen.

2) Singuläre LGS und Ausgleichsprobleme (kleinste Quadrate) lösen.

3) Bildkompressionsverfahren. Dabei wird ein Bilde als Matrix von Farbwerten betra-
chtet, wovon die Singulärwertzerlegung berechnet wird. Bei der Rücktransformation
von UΣV H nach A werden aber nur noch die ”stark von 0 abweichenden” Singulärwerte
gespeichert, im Betrag kleine Singulärwerte werden vernachlässigt.
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Singulärwertzerlegung
Gegeben: A ∈ Em×n, m ≥ n (sonst betrachte AH)
Gesucht: U ∈ Em×m,Σ ∈ Rm×n, V ∈ En×n

1) Berechne B = AHA ∈ En×n

2) Berechne die Eigenwerte von B, ”nummeriere” sie der Grösse nach:

λ1 ≥ ... ≥ λr > λr+1 = ... = λn = 0,

wobei r = rang(B) = rang(AHA)

3)

Σij =

{
σi =

√
λi, i = j

0, sonst

4) Bilde die Orthonormalbasis {w1, ..., wn}mit Gram-Schmidt mit Eigenvektoren {v1, ..., vn}
von B. (Betrachte B = AHA ist hermitesch, d.h. verwende Bemerkung 1)

⇒ V = (w1| · · · |wn)

5)

∀i ∈ {1, ..., r} definiere u1 :=
1

σi
Awi ⇒ ui sind orthonormal/unitär

Ergänze {u1, ..., ur} zu einer Orthonormalbasis von Em×m mit Gram-Schmidt

⇒ U = (u1|...|um)

6) Test: A
?
= UΣV H X

Beispiel 3:
Gegeben:

A =

1 0
2 1
0 1


Gesucht: U,Σ, V so dass A = UΣV H ; Zusatzfrage: Beschreibe die vier Fundamentalräume
gemäss Satz 11.1 (siehe Skirpt).

1)

B = AHA = ATA =

(
5 2
2 2

)
2) Eigenwerte berechnen von B:

χB(λ) =

∣∣∣∣5− λ 2
2 2− λ

∣∣∣∣
= (5− λ)(2− λ)− 4

= 10− 2λ− 5λ+ λ2 − 4

= λ2 − 7λ+ 6

= (λ− 1)(λ− 6)
!

= 0

⇒ λ1 = 6 > λ2 = 1
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3)

σ1 =
√

6, σ2 =
√

1 = 1 ⇒ Σ =

√6 0
0 1
0 0


4)

E6 = ker(B − 61) = span

{(
2
1

)}
⇒ v1 =

(
2
1

)
normieren
 w1 =

1√
5

(
2
1

)
E1 = ker(B − 1) = span

{(
1
−2

)}
⇒ v2 =

(
1
−2

)
normieren
 w2 =

1√
5

(
1
−2

)
⇒ V =

1√
5

(
2 1
1 −2

)
5)

u1 =
1√
6

1√
5

1 0
2 1
0 1

(2
1

)
=

1√
30

2
5
1


u2 =

1√
1

1√
5

1 0
2 1
0 1

( 1
−2

)
=

1√
5

 1
0
−2


ũ3 = e2 − 〈e2, u1〉u1 − 〈e2, u2〉u2

=

0
1
0

− 1√
30

1√
30
〈

0
1
0

 ,

2
5
1

〉
2

5
1

− 1√
5

1√
5
〈

0
1
0

 ,

 1
0
−2

〉
 1

0
−2


=

0
1
0

− 5

30

2
5
1

− 0 ·

 1
0
−2


=

0
1
0

− 1

6

2
5
1


=

1

6

−2
1
−1



u3 =
ũ3

‖ũ3‖
=

1√
6

−2
1
−1



⇒ U =


2√
30

1√
5
− 2√

6
5√
30

0 1√
6

1√
30
− 2√

5
− 1√

6


6) Test: A = UΣV H X
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7) Die vier Fundamentalräume:

im(A) = {u1, u2}
im(AH) = {w1, w2}
ker(AH) = {u3}

ker(A) = {}

Beispiel 4: Gegeben:

A =

 1 0
1 1
−1 1


Gesucht: U,Σ, V so dass A = UΣV H

Lösung:

Σ =

√3 0

0
√

2
0 0

 , V =

(
1 0
0 1

)
= 12, U =


1√
3

0 2√
6

1√
3

1√
2
− 1√

6

− 1√
3

1√
2

1√
6


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