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1 Eigenwerte und Eigenvektoren

Sei in diesem Abschnitt V' ein Vektorraum iiber E, dim(V) =n < oo, A € E™".
Definition.

e )\ € E heisst Eigenwert (EW)von A <  FJoeV\{0}: Av=)v.
v € V' \ {0} heisst dann Figenvektor (EV) von A zum Eigenwert .

E\(A) = {v € V|Av = v} heisst Eigenraum von A zum Eigenwert \.

o(A) := {\| \ Eigenwerte von A} heisst Spektrum von A.

Bemerkung.
E\(A) =ker(A — A1) ist ein nichttrivialer Untervektorraum von V', d.h. es gilt:

{0} € E\(A) (echt grosser als nur der Nullraum)

Bemerkung.
Diese Definition lésst sich analog fiir eine lineare Abbildung F' : V — V fiihren. Es
gilt:

A ist ein Eigenwert von F, v ist ein Eigenvektor vonF
< )\ ist ein Eigenwert von A, v ist ein Eigenvektor von A,

wobei A die Abbildungsmatrix von F' bezeichnet.

Bemerkung. Herleitung des charakteristischen Polynoms x .
Betrachte

Av=XM & Av— > v=0
& (A-A)v=0 (1)

v =016st (1), aber v = 0ist als Eigenvektor nicht zugelassen. Wir fordern mehr Losungen,
d.h. oo viele Losungen (da ein LGS immer 0, 1 oder oo viele Losungen hat). Gemaéss dem

Satz aus der Erinnerung konnen wir dies , indem wir det(A — A1) 20 setzen, weil

Satz

det(A—A1)=0 &  A— Al singular
=

(A — Al)v = 0 hat oo viele Losungen, da v = 0 nicht zugelassen ist.

Definition.
Xa(A) = det(A — A1) heisst charakteristisches Polynom.

Bemerkung.
e x4(A) hat Grad n

e )\ ist der Eigenwert von A
< )\ ist eine Nullstelle (NST) des charakteristischen Polynoms x4 ().



Bemerkung. Mitternachtsformel (auswendig)
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Berechnung von Eigenwerten und Eigenvektoren

Gegeben: A € ™"

(falls F': V' — V lineare Abbildung gegeben ist, finde zuerst die Abbildungsmatrix A)
Gesucht: o(A) (d.h. V Eigenwerte von A), E\(A) mit Y\ € 0(A)

1) Berechne y4(A) = det(A — A1)
2) Setze xa(A) =0

= n Nullstellen A\, ..., A\,

= O'(A) = {/\17 ey )\n}
Bemerkung. A1, ..., A\, sind nicht zwingend verschieden, sondern mit Nullstellenvielfach-
heit gezahlt.

3) Fiir jeden verschiedenen Eigenwert A bestimme die Basis von E), (A) = ker(A — A1)
mit Hilfe von der Gauss-Elimination.

4) Die Menge der Eigenvektoren ist

span {U Basis von E), (A)} \ {0}

k

(Wir vereinigen alle Eigenrdume minus den Nullvektor)

Beispiel 1:
Gegeben:

1
A= 14
0

S W N
ot N W

Gesucht: Eigenwerte, Eigenvektoren von A

Losung:



Xa(A) = det(A — A1)

(1-XN) 2 3
= det 4 (3—=2X) 2 )

0 0 (5-2N\)
=(1=-XNB-ANE-A)-0B-X)-4-2
=G-AN)I-MNB-A) —4-2
=(B5-N3-3A-A+)—g]
= (5= A)[A? — 4\ — 5]

( )

5—=A)(A—=5)(A+1) (allenfalls mit Hilfe der Mitternachtsformel)
—(A=5)(A=5)(A+1)
—(A =52\ +1)
2)
xa(\) =0

& —(A=5)*A+1)=0
= A =X=5 (Spéter: algebraische Vielfachheit von 5 ist 2)
Ag = —1
= g(A) ={5,—-1}



Bemerkung.

Es wire mathematisch unprézis in Beispiel 1 zu sagen: ”Die Eigenvektoren sind (1,2, 0)7
und (1, —1,0)7”. Denn es gibt oo viele Eigenvektoren.

Sei zum Beispiel v ein Eigenvektor von A zum Eigenwert A, d.h. Av = \v

= c- v ist ein Eigenvektor von A zu A fiir alle ¢ € E, da auch A(cv) = A(cv) gilt.

Meist geniigt es trotzdem, einen Basisvektor: v € E)(A)\ {0} als "représentativen Eigen-
vektor zu nehmen.

2 Spektralzerlegung, Diagonalisierbarkeit

Definition.
Sei A ein Eigenwert von A € E"*™,

o Algebraische Vielfachheit von A:

)

ay := "Nullstellen vielfachheit von A in x ()’

o Geometische Vielfachheit:

= dim(ker(A — A1))
=n —rang(A — A1)

Definition.
A heisst diagonalisierbar (es existiert eine Spektralzerlegung)

& AV e EV, A e E™", mit V regular, A diagonal, so dass
A=VAV!

Man sagt auch: 7 A ist @hnlich zu einer Diagonalmatrix”.

Satz.

A ist diagonalisierbar

< Die Eigenvektoren von A bilden eine Basis von V'
< Fir alle Eigenwerte A von A gilt gy = a,.

Bemerkung.
Eine Diagonalisiertung ist ein Basiswechsel mit Transformationsmatrizen V und V1.

Satz.
Bei Ahnlichkeitstransformation bleibt erhalten:

Eigenwerte und deren algebraische und geometrische Vielfachheit
e Rang

Determinante

e Spur

Charakteristische Polynom x4 (t)



e nicht die Eigenvektoren!

fh

Lel’ ok

Berechnung der Diagonalmatrix
Gegeben: A € E™*" diagonalisierbar
Gesucht: V, A € E™*"

1) Finde die Eigenwerte Aq,...,\, und finde die dazugehérigen Eigenvektoren vy, ..., v,
von A (wobei v; € Ey,(A) und {v;}; linear unabhéngig).

2) Definiere die Diagonalmatrix wie folgt:

M O -0
0o . ,
A= mit Ay > ... >\,
N
0 -+ 0 X\,

3) Schreibe die Eigenvektoren v; € E),(A) in eine Matrix:

V= (o]~ -Jvn)

4) Test: A ZVAV-!

Beispiel 1: fortgesetzt...
Sei

1 2 3

A=14 3 2

0 0 5

Gesucht: Algebraische und geometrische Vielfachheit

wie in Beispiel 1 mit x4(\) = —(A — 5)*(A + 1)

Losung:

e Algebraische Vielfachheit:

AM=bmitas =2 und A =-—-1mit a_; =1

e Geometrische Vielfachheit:

gs = dlm(E5(A>> =1 # a5 = 2
g1 = dlm(E_l(A)) =1 = Q-1 = 1

Da g5 # a5 = A ist nicht diagonalisierbar.



Beispiel 2:

Gegeben:
0 -1 1
A=|-3 -2 3
-2 -2 3

Gesucht: Finde die Spektralzerlegung.

Losung:

()

Xa(A) =det(A — A1)
A -1 1
=|-3 —2—X\ 3
—2 -2 3=
= M=2-XNMB-XN)+(-1)-3-(=2)+1-(=3)-(=2)
—(=2) - (=2=2) - 1=(=2)-3- (=) =B =A) - (=3) - (1)
=6A 307 =22 2 = A3+ 6+6—4 -2\ — 6\ — 9+ 3\
=N+ +A-1

Bemerkung. Hier miisst ihr ein Trick verwenden, indem ihr die Nullstelle erratet
(teste: 1,—1,2,—2, etc.) und dann eine Polynomdivision durchfiihrt.

A1 = 1 ist eine Nullstelle: (- 4+24+t-1):(t—1)= —t*+1
t3_t2
t—1
—t+1
0

= xaN) = A -=1(1+1)
=—(A—=172*A\+1)

xa(\) =0
S0=—-A-1>*0\+1)
= M=X=1, a1=2
AM=—-1, a1 =1
= o(A)={-11}



-1 -1 1
=ker | -3 -3 3
-2 =2 2
. ) -1 -1 1 1
Gz wer [ 00 0 0] =spand | —1
0 0 0 0
= g1=2
L] )\3 = —1
E_1(A) =ker(A+1)
1 -1 1
=ker [ -3 -1 3
-2 =2 4
. . 1 -1 1
U ker [0 —4 6
0 —4 6
e 1 -1 1
G rer [0 2 -3 = span
0 0 0
= ga=1
e a1 = gy und a_; = g_1 = A ist diagonalisierbar.
(iv) Menge der Eigenvektoren:
1 1 1
span —-11,101],13
0 1 2
2)
10 0
A=1(0 1 0
0 0 —1
3)
e TR
V=|(-103], vi'i=[-1 -1 2],
N Loy

wobei ihr die Inverse V~! mit dem {iblichen Rezept berechnet.

4) Test: A=VAVly



Bemerkung.

Komplexwertige Nullstellen des Charakteristischen Polynoms mit reellen Koeffizienten
treten immer paarweise auf, und zwar ist mit A\ € C auch X\ eine Nullstelle. Somit muss
eine orthogonale Matrix von ungerader Dimension mindestens einen reellen Eigenwert +1
besitzen.

Defiinition.
Die Summe der Diagonalelemente von A € E"*™ nennt man Spur von A:

n

spur(A) := Z Qi = 11 + ... + Q.
i=1

Lemma 9.6
Eine (quadratische) Matrix A ist genau dann singuldr, wenn sie 0 als Eigenwert hat:

Asinguar <  0€o0(A).

Satz 9.11
Eigenvektoren zu verschiedenen Eigenwerten sind linear unabhéangig.

Korollar 9.12
Sind die n Eigenwerte von F': V' — V (mit n = dim(V)) verschieden, so gibt es eine Basis
von Eigenvektoren und die entsprechende Abbildungsmatrix ist diagonal.

Satz 9.15
Ist A € C™*™ hermitesch, so gilt:

(i) Alle Eigenwerte Aq, ..., A, sind reell.

(ii) Die Eigenvektoren zu verschiedenen Eigenwerten sind paarweise orthogonal in C.
(iii) Es gibt eine orthonormale Basis des C" aus Eigenvektoren uy, ..., u, von A.
)

(iv) Fir die unitdre Matrix U := (uq, ..., u,,) gilt:

URAU = A = diag(\y, ..., \n).

3 Singularwertzerlegung

Satz.
Sei A € E™™ symmetrisch (A7 = A) oder hermitesch (A7 = A" = AT = A), dann
gilt:

(i) A hat nur reelle Eigenwerte
(ii) Eigenvektoren zu verschiedenen Eigenwerten sind paarweise orthogonal

Bemerkung 1.

Um einen Orthonormalbasis aus Eigenvektoren einer symmetisch/hermiteschen Matrix
zu erhalten, muss man die Eigenvektoren nur normieren und gegebenenfalls mit Gram-
Schmidt orthogonalisieren (macht man falls es einen Eigenwert mit geometrischer Vielfach-
heit > 1 gibt).



Satz. Singuldrwertzerlegung
Sei A € E™*" rang(A) =: r <min{m,n}. Dann existieren U € E™*"™ orthogonal/unitér,
V € E™" orthogonal /unitér, ¥ € R™*" wobei

o 0 - 0
S, 0 br 0 .. e
Y= 0 0 } , mit 3, = ' T, o> >0.>0
0 -~ 0 o,

eine verallgemeinerte Diagonalmatrix mit Singuldrwerten oy, ..., o, ist, so dass A = UXVH,
d.h. A besitzt eine Singulédrwertezerlegung.

Satz.
Sei A € Em™*n,
AA = (UzvhiuzvH
=V 2 vy xvH
~~ =
=»T; =1, da U unitir

=VyxTyyH

= A A ist dhnlich zu (im Sinne von unitdrer Spektralzerlegung) zu

o2 0 0 0 0
0 :

O :
¥E=[0 - 0 o2 0 ol e R
0 0 O 0
0 v i 0 0 --- 0

= 0, = /A, wobei )\; die positiven reellen Eigenwerte von A7 A sind.
Anwendung.

1) Die Singuldrwertzerlegung ist gewissermassen eine Verallgemeinerung von der Spek-
tralzerlegung fiir Rechtecksmatrizen.

2) Singuldre LGS und Ausgleichsprobleme (kleinste Quadrate) 16sen.

3) Bildkompressionsverfahren. Dabei wird ein Bilde als Matrix von Farbwerten betra-
chtet, wovon die Singularwertzerlegung berechnet wird. Bei der Riicktransformation
von UXV# nach A werden aber nur noch die ”stark von 0 abweichenden” Singulirwerte
gespeichert, im Betrag kleine Singularwerte werden vernachlassigt.




Singularwertzerlegung
Gegeben: A € E™ "™ m > n (sonst betrachte AH)
Gesucht: U € E™*™ ¥ € R™*", V € E™"

1) Berechne B = A A € Ev
2) Berechne die Eigenwerte von B, "nummeriere” sie der Grosse nach:
M> 2> ==\, =0,
wobei r = rang(B) = rang(A" A)

3)

0, sonst

4) Bilde die Orthonormalbasis {wy, ..., wy, } mit Gram-Schmidt mit Eigenvektoren {vy, ..., v,}
von B. (Betrachte B = A¥ A ist hermitesch, d.h. verwende Bemerkung 1)

= V= (w] - |wy)

1
Vi e {l,....,r} definiere wu; := —Aw; = u; sind orthonormal /unitar
o}
Ergénze {uy,...,u,} zu einer Orthonormalbasis von E™*™ mit Gram-Schmidt

6) Test: A=USVH «

Beispiel 3:
Gegeben:

A:

O N =
— = O

Gesucht: U, 3,V sodass A = UXVH: Zusatzfrage: Beschreibe die vier Fundamentalraume
geméss Satz 11.1 (siehe Skirpt).

1)

o H4 AT [D 2
B=A"A=A A—(2 2)

2) Eigenwerte berechnen von B:

5 2
XB(A)—‘ 2 2—>\‘

=(B-N2-)\)—4

=10 -2\ —5A+ X\ —4

=M —-7\+6

—(A=1(A=6)=0
= M=06>X=1

11
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6) Test: A
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7) Die vier Fundamentalrdume:

Beispiel 4: Gegeben:

Gesucht: U, X,V so dass A =UXVH

Losung:

V3 0
0 V2|, V=
0 0

¥ =

(

1
0

0
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