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1 Wiederholung: Komplexe Zahlen

Bemerkung.
z2 + 1 = 0 ist ein Beispiel für eine in R unlösbare Gleichung. Um eine Lösung zu finden
erweitern wir deshalb den Körper auf R2 und nennen dies Körper (engl. Field, wird in
der diskreten Mathematik im 5. Kapitel Algebra genauer behandelt) der komplexen
Zahlen C.

Definition 1.1: imaginäre Einheit

i2 = −1

i =∧ die imaginäre Einheit

Definition 1.2: kartesische Form

z = x+ iy

Definition 1.3: Real- und Imaginärteil

Re(z) := x ∈ R =∧ Realteil

Im(z) := y ∈ R =∧ Imaginärteil

Definition 1.4: Konjugation

Die Konjugation von z = x+ iy ∈ C sei

z = x− iy ∈ C.

Die Konjugation hat die folgenden Eigenschaften:

(i) Für alle z = x+ iy = (x, y), z ∈ C = R2 gilt

• z · z = (x+ iy) · (x− iy) = x2 − i2y2 = x2 + y2 = ‖z‖2 .

(ii) Für alle z1, z2 ∈ C gilt

• z1 + z2 = z1 + z2;

• z1z2 = z1 z2.

Satz 1

Weitere Eigenschaften der komplexen Zahlen. Sei z, w ∈ C, dann gilt folgendes

(i) ‖z · w‖ = ‖z‖ · ‖w‖

(ii) ‖ z
w
‖ = ‖z‖

‖w‖ , w 6= 0

(iii) ‖z‖ = ‖z‖
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(iv) ‖z + w‖ ≤ ‖z‖+ ‖w‖ Dreiecksungleichung

Definition 1.5: Euler Formel

eiϕ = cosϕ+ i sinϕ

Definition 1.6: Polarform

Die Polarform von z = x+ iy ∈ C sei (Achtung! ϕ ∈ (−π, π])

z = reiϕ,

Euler Formel⇔ z = r(cosϕ+ i sinϕ),

mit r = ‖z‖,
x = r cosϕ,

y = r sinϕ.

ϕ =



arctan
(
y
x

)
, x > 0

arctan
(
y
x

)
+ π, x < 0 ∧ y ≥ 0

arctan
(
y
x

)
− π, x < 0 ∧ y < 0

π
2
, x = 0 ∧ y > 0

−π
2
, x = 0 ∧ y < 0

undefiniert, x = 0 ∧ y = 0

Bemerkung.
Die Berechnung des Winkels ϕ′ im Intervall (0, 2π] kann im Prinzip so durchgeführt wer-
den, dass der Winkel zunächst wie vorstehend beschrieben im Intervall (−π, π] berechnet
wird und, nur falls er negativ ist, noch um 2π vergrössert wird:

ϕ′ =

{
ϕ+ 2π, ϕ < 0

ϕ, otherwise.

Bemerkung.
Alternativ zu arctan kann die Berechnung von ϕ auch über den sinus und cosinus erfol-
gen:

cos(ϕ) =
x

r
⇐⇒ ϕ = arccos

(x
r

)
sin(ϕ) =

y

r
⇐⇒ ϕ = arcsin

(x
r

)
Bemerkung. (Ausblick).
z2+1 = 0 ist ein Beispiel für eine inR unlösbare Gleichung, die in C Lösungen hat (nämlich
z = ±i). Allgemein gilt der Fundamentalsatz der Algebra: Jedes Polynom

p(z) = zn + an−1z
n−1 + · · ·+ a0

vom Grad n ≥ 1 hat in C eine Nullstelle. Das heisst, C ist im Unterschied zu R alge-
braisch vollständig.

Beispiel 1.1. Berechne: 6+7i
3−8i

Lösung .

6 + 7i

3− 8i
=

6 + 7i

3− 8i
· 3 + 8i

3 + 8i
=

18 + 21i+ 48i+ 56i2

9− 64i2
=

18 + 21i+ 48i− 56

9 + 64
=
−38 + 69i

73
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Beispiel 1.2. Berechne die Polarform von z = 1 + i.

Lösung .

r =
√

12 + 12 =
√

2

ϕ = arctan

(
1

1

)
=
π

4

⇒ z =
√

2ei
π
4

Beispiel 1.3. Berechne die kartesische Form von 7ei
π
3 .

Lösung .

7ei
π
3 = 7(cos

(π
3

)
+ i sin

(π
3

)
) = 7 · 1

2
+ 7 ·

√
3

2
i =

7

2
+

7
√

3

2
i

Beispiel 1.4. Zeichnen Sie die folgenden Mengen grafisch in der komplexen Ebene:

D :=

{
n ∈ N :

(√
2

2
(1 + i)

)n}

Lösung . In Polarkoordinaten gilt (1 + i) =
√

2ei
π
4 , also folgt(√

2

2
(1 + i)

)n

= ei
nπ
4 .

Weil eiθ = eiθ+2kπ ∀k ∈ Z besteht D aus 8 Punkten, die für n = 0, 1, 2, ..7 gefunden
werden:

D = {1, ei
π
4 , ei

2π
4 , ei

3π
4 , ei

4π
4 , ei

5π
4 , ei

6π
4 , ei

7π
4 }

Beispiel 1.5. Zeichnen Sie die folgenden Mengen grafisch in der komplexen Ebene:

E := {z ∈ C : ‖z − i‖ < ‖z − 1‖}
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Lösung .

‖z − i‖ < ‖z − 1‖
⇐⇒ ‖z − i‖2 < ‖z − 1‖2

⇐⇒ ‖x+ iy − i‖2 < ‖x+ iy − 1‖2

⇐⇒ ‖x+ i(y − 1)‖2 < ‖(x− 1) + iy‖2

zz=x2+y2⇐⇒ x2 + (y − 1)2 < (x− 1)2 + y2

⇐⇒ x2 + y2 − 2y + 1 < x2 − 2x+ 1y2

⇐⇒ y > x

Bemerkung: (sollte auf eure Zusammenfassung für die Prüfung)
Im folgenden sieht ihr ”schöne” Cosinus- und Sinuswerte auf dem Einheitskreis, wobei die
x-Richtung cos(x) und die y-Richtung sin(x) entspricht:

Bemerkung. Mitternachtsformel (auswendig)
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ax2 + bx+ c = 0

⇒ x1,2 =
−b±

√
b2 − 4ac

2a

Beispiel 1.6. Finde alle Lösungen zu der folgenden Gleichung:

z2 − 2
(√

3i+ eiπ
)

= 0 (1)

Lösung .

z2 − 2
(√

3i+ eiπ
)

= 0

eiπ=−1⇐⇒ z2 − 2
(√

3i− 1
)

= 0

⇐⇒ z2 = 2
(√

3i− 1
)

⇐⇒ z2 = −2 + 2
√

3i

⇐⇒ z2 = 4

(
−1

2
+

√
3

2
i

)
polar Form und Euler Formel⇐⇒

(
reiϑ

)2
= 4ei

2π
3

⇐⇒ r2e2iϑ = 4ei
2π
3

=⇒ r =
√

4 = 2

=⇒ 2ϑ =
2π

3
+ 2kπ, ∀k ∈ Z

⇐⇒ ϑ =
π

3
+ kπ, ∀k ∈ Z

=⇒ z = 2ei(
π
3
+kπ) for k = 0, 1

⇐⇒ z =
{

2ei
π
3 , 2ei

4π
3

}
⇐⇒ z =

{
1 +
√

3i,−1−
√

3i
}
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2 Supremum und Infimum

Theorem 1: Archimedisches Prinzip (Credit: Olivier Bitter)

1. (Version 1): ∀b > 0 ∃n ∈ N : b < n ”Wir können immer grösser werden.”

2. (Version 2): ∀ε > 0 ∃n ∈ N : 1
n
< ε ”Wir können immer kleiner werden.”

Definition 2.1: obere Schranke

Sie A ⊂ R eine Teilmenge von R. Eine Zahl b ∈ R heisst obere Schranke für A, falls

∀a ∈ A : a ≤ b.

Definition 2.2: untere Schranke

Eine untere Schranke für A ist eine Zahl c ∈ R, so dass folgendes gilt

∀a ∈ A : a ≥ b.

Bemerkung.
Beachte, dass obere oder untere Schranken von A keine Elemente von A sein müssen.
Falls die Teilmenge A eine obere Schranke besitzt, so heisst A nach oben beschränkt. Falls
eine untere Schanke für A existiert, so heisst A nach unten beschränkt.

Bemerkung.
Es können mehrere Schranken für eine Menge A existieren, d.h. Schranken sind nicht
eindeutig. Ist zum Beispiel b eine obere Schranke für A, so ist es auch jede reelle Zahl,
die grösser ist als b.

Definition 2.3: Supremum, Infimum

Das Supremum von einer Menge A ist die kleinste obere Schranke von A (Notation:
sup(A)). Das Infimum von A ist die grösste untere Schranke von A (Notation: inf(A)).
Falls A nach oben und/oder nach unten unbeschränkt ist, so setzen wir

sup(A) = +∞, inf(A) = −∞.

Bemerkung.
Während obere und untere Schranken nicht eindeutig sind, sind das Supremum und das
Infimum einer Menge A immer eindeutig. Das Supremum und das Infimum müssen keine
Elemente von A sein.

Definition 2.4: Maximum, Minimum

Falls sup(A) ∈ A, so heiss sup(A) das Maximum von A mit folgender Notation:

sup(A) = max(A).
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Analog, falls inf(A) ∈ A, so heisst inf(A) das Minimum von A mit folgender Notation:

inf(A) = min(A).

Definition 2.5

Seien B,C ⊂ R nicht leer, dann bezeichnet B + C die folgende Menge

B + C := {b+ c | b ∈ B, c ∈ C}.

Satz 2: Rechnen mit sup/inf

Seien B,C ⊂ R nicht leer, dann gelten die folgenden Formeln

(i) sup(B + C) = sup(B) + sup(C)

(ii) inf(B + C) = inf(B) + inf(C)

(iii) sup(B ∪ C) = max{sup(B), sup(C)}

(iv) inf(B ∪ C) = min{inf(B), inf(C)}.

Algorithm 1 Supremum Proofs (Credit: Olivier Bitter)

1: Input: A set S
2: if S 6= ∅ ∧ obere Schranke(S) 6= ∅ then
3: ”Errate” s+ und behaupte, dass ”s+ ∈ obere Schranke(S)” gilt.
4: Beweise die Behauptung indem wir zeigen, dass ∀s ∈ S : s+ ≥ s gilt.
5: // Damit wissen wir, dass supS existiert.
6: Jetzt behaupten wir, dass ”s+ = supS” gilt.
7: if s+ ∈ S then
8: // Proof by demonstration
9: supS = maxS = s+ und wir sind fertig!

10: else
11: // Widerspruchsbeweis
12: Zeige, dass s /∈ S gilt. // Damit wissen wir, dass maxS nicht existiert.
13: Führe ein ε-Beweis durch, wie im folgenden Beispiel erklärt. Fertig!
14: end if
15: else
16: S ist entweder leer oder nicht von oben beschränkt, beides impliziert, dass
17: supS und maxS nicht existieren.
18: Falls S von oben unbeschränkt ist, müssen wir das ebenfalls beweisen!
19: end if

Bemerkung. (Credit: Olivier Bitter)
Ein ε-Beweis (Zeile 13) wird wie folgt gefḧrt:
Sei ε > 0 und unsere Widerspruchsannahme ist, dass s′ := s − ε eine weitere obere
Schranke für S ist. Finde ein Element s ∈ S, so dass es strikt grösser ist als s′, was unsere
Annahme widerspricht (wir haben angenommen, dass s′ eine obere Schranke ist).
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Beispiel 2.1 (Credit: Olivier Bitter).
Gegeben: M1 :=

{
1 + 1

n
: n ∈ N− {0}

}
Gesucht: sup /max and inf /min (falls sie existieren)

Wir starten mit sup /max:

1. (Line 2): Es sollte offensichtlich sein, dass M1 6= ∅. Dass die obere Schranke(M1) 6=
∅ sollte ebenfalls klar sein, weil die Elemente abnehme mit wachsendem n. Wir
müssen das trotzdem noch formal beweisen (siehe Schritte 2 - 5).

2. (Line 3): Wir erraten m+ = 2 und behaupten, dass 2 ∈ obere Schranke(M1) ist.

3. (Line 4): ∀n ≥ 1:

n ≥ 1⇔ 1 ≥ 1

n
⇔ 2 ≥ 1 +

1

n
,

damit haben wir gezeigt, dass 2 ∈ obere Schranke(M1).

4. (Line 7): Wenn wir n = 1 wählen, dann 1 + 1
1

= 2 = m+ und damit haben wir
gezeigt, dass m+ ∈M1.

5. (Line 9): Wir fassen unser Resultat nochmals zusammen: supM1 = maxM1 = 2.

Nun berechnen wir inf /min:

1. (Line 2): Es sollte wieder offensichtlich sein, dass M1 6= ∅. Es sollte intuitiv klar sein,
dass die Elemente nie negative werden können, damit ist untere Schranke(S) 6= ∅.

2. (Line 3): Wir erraten m− = 1 und behaupten ”1 ∈ untere Schranke(S)”.

3. (Line 4): Um zu sehen, dass 1 eine untere Schranke ist, machen wir die folgende
Umformungen: ∀n ≥ 1:

1 ≥ 0⇔ 1

n
≥ 0⇔ 1 +

1

n
≥ 1.

4. (Line 7): Es sieht so aus als ob mit wachsendem n die Elemente sehr nahe an die 1
kommen ohne diese jemals zu erreichen. Deshalb kommen wir auf die Zeile 10 und
müssen ein Widerspruchsbeweis führen.

5. (Line 12): Unsere Widerspruchsannahme ist, dass 1 ∈ M1. Aber dann existiert ein
n ≥ 1, so dass folgendes gilt:

1 = 1 +
1

n
⇔ 0 =

1

n
⇔ 0 = 1

was ein Widerspruch ist. Daraus folgt, dass M1 kein Minimum besitzt.

6. (Line 13): Nun möchten wir zeigen, dass 1 die grösste undere Schranke von M1 ist.
Unser Widerspruchsannahme ist, dass es eine grössere untere Schranke existiert mit
m′ = m− + ε. Aber in dem Fall müsste folgendes gelten:

1 + ε ≤ 1 +
1

n
⇔ ε ≤ 1

n
(∀n ≥ 1).

Dies steht im Widerspruch zum Theorem 1 (Version 2 vom archimedischem Prinzip).
Daraus folgt, dass inf M1 = 1 und es existiert kein Minimum.
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