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1 Wiederholung: Komplexe Zahlen

Bemerkung.

2?2 +1 = 0 ist ein Beispiel fiir eine in R unlosbare Gleichung. Um eine Losung zu finden
erweitern wir deshalb den Korper auf R? und nennen dies Korper (engl. Field, wird in
der diskreten Mathematik im 5. Kapitel Algebra genauer behandelt) der komplexen
Zahlen C.

Definition 1.1: #maginare Einheit

i =—1

die imaginédre Einheit

11>

Definition 1.2: kartesische Form

z=x+ 1y

Definition 1.3: Real- und Imagindrteil

Re(z) .=z € R = Realteil
Im(z) ==y € R = Imaginirteil

Definition 1.4: Konjugation
Die Konjugation von z = z + 1y € C sei
z=xz—1y € C.
Die Konjugation hat die folgenden Figenschaften:
(i) Fir alle z = z + iy = (z,y), 2z € C = R? gilt
z2-Z2=(z+w) (c—iy) =22 — 22 =22+ 4% = |2°.

(i) Fir alle 21, 20 € C gilt
o 21+ 22 =721 + 23;

® 2129 = 2_12_2

Satz 1

Weitere Eigenschaften der komplexen Zahlen. Sei z,w € C, dann gilt folgendes
(1) [z - wll = [lz[] - [leo]]

) 1120l = 2w 0

(iii) [[z]| = =]



(iv) ||z + w| < ||z|| + ||w|| Dreiecksungleichung

Definition 1.5: Fuler Formel

€'Y = cosp + isinp

Definition 1.6: Polarform

Die Polarform von z =z + iy € C sei (Achtung! ¢ € (—m, 7))

2 =reé¥, 'arctan(%), x>0
Buler Formel _ —r{cosip+ ising). a,rctan(%) +m, x<0Ay>0
_ B arctan(%) —m, z<0Ay<O0
mit r = [|z]|, Y= 3 2=0Ay>0
x:rc?sgo, — 5 r=0Ay<0
y=rsmy. | undefiniert, r=0Ay=0

Bemerkung.

Die Berechnung des Winkels ¢’ im Intervall (0, 27] kann im Prinzip so durchgefiihrt wer-
den, dass der Winkel zunéchst wie vorstehend beschrieben im Intervall (—m, 7] berechnet
wird und, nur falls er negativ ist, noch um 27 vergrossert wird:

, {gp + 27, <0
¥ = .
v, otherwise.

Bemerkung.
Alternativ zu arctan kann die Berechnung von ¢ auch iiber den sinus und cosinus erfol-
gen:

x x
cos(yp) = - = w= arccos(;)
sin(p) = % = 0= arcsin(%

Bemerkung. (Ausblick).
2?+1 = 0 ist ein Beispiel fiir eine in R unlosbare Gleichung, die in C Losungen hat (namlich
z = #+i). Allgemein gilt der Fundamentalsatz der Algebra: Jedes Polynom

p(2) = 2"+ a1 2"+ Hag
vom Grad n > 1 hat in C eine Nullstelle. Das heisst, C ist im Unterschied zu R alge-

braisch vollstandig.

6+74

Beispiel 1.1. Berechne: =2

Losung.

6+70 64+7i 3+8  18+21i+48i456:* 184 21i+48i —56  —38 + 69i

3-8 3-8 3+8 9 — 6442 9+ 64 73




Beispiel 1.2. Berechne die Polarform von z =1 + 4.

Losung.

r=V12+12=1v2

; 1 T
= arctan| — | = —
Y 1) " 1

=z = \/561%

Beispiel 1.3. Berechne die kartesische Form von 7e's .

2 2

Losung.
- 1
Te's = 7(008(%) —H’sin(g)) =7 3 +7- \/731 ‘ + Mg@

Beispiel 1.4. Zeichnen Sie die folgenden Mengen grafisch in der komplexen Ebene:

D::{nE]N ; (?(1—1—2)) }

Lésung. In Polarkoordinaten gilt (1 + i) = 1/2¢'%, also folgt

(éu + i)) = i'T.

2

Weil € = ¢¥+2k7 L c 7 besteht D aus 8 Punkten, die fiir n = 0,1,2,..7 gefunden

werden:
T

D ={l,e's ¢4 e 4 e e e}

- 37
e''r e's
o [ J
4
el 1
—@ *—
- 57 -7
e''r e'’r
o [ ]
- 67
et

Beispiel 1.5. Zeichnen Sie die folgenden Mengen grafisch in der komplexen Ebene:

E={z€C : |z—1|| <|z—1]}



Losung.

Iz =l < flz =1

= Iz —i]]* < ||z = 1|7
= lz + iy —i|* < ||z + iy — 1]
= o +i(y — DII* < [l(x — 1) +iy|”
2z=12 2
= 4+ (y—1)7 < (z -1+

— 4y =2y +1<a®—22+1y°
= y>x

Im ,

’
»

Bemerkung: (sollte auf eure Zusammenfassung fiir die Priifung)
Im folgenden sieht ihr "schone” Cosinus- und Sinuswerte auf dem Einheitskreis, wobei die
z-Richtung cos(z) und die y-Richtung sin(z) entspricht:

Bemerkung. Mitternachtsformel (auswendig)



ar’ +br+c=0

—b+ Vb —4dac
2a

= T2 =

Beispiel 1.6. Finde alle Losungen zu der folgenden Gleichung;:

Z2—2<\/§i+e”> =0

Losung.
22 (VBite™) =0
= 2o2(VBi-1) =0
= P=2(V3i-1)
= 2= -242V3
<~

1 V3
2:4 = v,
(1)

;2T
3

(7’6“9)2 = 4¢'

- 7’262“9 — 4e'5

polar Form und Euler Formel
<~

E— 7”:\/1:2
2

— ﬁzgwm, Vk € 7

- -4
= {2@’5, 26’?}

z:{1+\/§i,—1—\/§z}

[



2  Supremum und Infimum

Theorem 1: Archimedisches Prinzip (Credit: Olivier Bitter)

(Version 1): Vb >03dn € N:b<n 7Wir kénnen immer grosser werden.”

1.
2. (Version 2): Ve > 03n € N : % < € 7Wir konnen immer kleiner werden.”

Definition 2.1: obere Schranke

Sie A C R eine Teilmenge von R. Eine Zahl b € R heisst obere Schranke fiir A, falls

Va € A : a<b.

Definition 2.2: untere Schranke

Eine untere Schranke fir A ist eine Zahl ¢ € R, so dass folgendes gilt

Va € A : a>b.

Bemerkung.

Beachte, dass obere oder untere Schranken von A keine Elemente von A sein miissen.
Falls die Teilmenge A eine obere Schranke besitzt, so heisst A nach oben beschrdnkt. Falls
eine untere Schanke fiir A existiert, so heisst A nach unten beschrainkt.

Bemerkung.

Es konnen mehrere Schranken fiir eine Menge A existieren, d.h. Schranken sind nicht
eindeutig. Ist zum Beispiel b eine obere Schranke fiir A, so ist es auch jede reelle Zahl,
die grosser ist als b.

Definition 2.3: Supremum, Infimum

Das Supremum von einer Menge A ist die kleinste obere Schranke von A (Notation:
sup(A)). Das Infimum von A ist die grosste untere Schranke von A (Notation: inf(A)).
Falls A nach oben und/oder nach unten unbeschrdinkt ist, so setzen wir

sup(A4) = +o0, inf(A) = —o0.

Bemerkung.

Wahrend obere und untere Schranken nicht eindeutig sind, sind das Supremum und das
Infimum einer Menge A immer eindeutig. Das Supremum und das Infimum miissen keine
Elemente von A sein.

Definition 2.4: Maximum, Minimum

Falls sup(A) € A, so heiss sup(A) das Mazimum von A mit folgender Notation:

sup(A) = max(A).



Analog, falls inf(A) € A, so heisst inf(A) das Minimum von A mit folgender Notation:

inf(A) = min(A).

Definition 2.5

Seien B,C C R nicht leer, dann bezeichnet B + C' die folgende Menge

B+C:={b+c|be B,ce C}.

Satz 2: Rechnen mit sup/inf

Seien B, C C R nicht leer, dann gelten die folgenden Formeln
(i) sup(B + C) = sup(B) + sup(C)
(ii) inf(B + C) = inf(B) + inf(C)

(iii) sup(B U C) = max{sup(B),sup(C)}

(iv) inf(BUC) = min{inf(B),inf(C)}.

Algorithm 1 Supremum Proofs (Credit: Olivier Bitter)

1: Input: A set S
2: if S # () A obere Schranke(S) # () then
3: "Errate” sT und behaupte, dass ”s* € obere Schranke(S)” gilt.

4: Beweise die Behauptung indem wir zeigen, dass Vs € S : sT > s gilt.

5: // Damit wissen wir, dass sup S existiert.

6: Jetzt behaupten wir, dass ”st = sup S” gilt.

7 if st €S then

8: // Proof by demonstration

9: sup S = max S = s* und wir sind fertig!

10: else

11: // Widerspruchsbeweis

12: Zeige, dass s ¢ S gilt. // Damit wissen wir, dass max S nicht existiert.
13: Fiihre ein e-Beweis durch, wie im folgenden Beispiel erklart. Fertig!

14: end if

15: else

16: S ist entweder leer oder nicht von oben beschrinkt, beides impliziert, dass
17: sup S und max S nicht existieren.

18: Falls S von oben unbeschrankt ist, miissen wir das ebenfalls beweisen!

19: end if

Bemerkung. (Credit: Olivier Bitter)

Ein e-Beweis (Zeile 13) wird wie folgt gefhrt:

Sei ¢ > 0 und unsere Widerspruchsannahme ist, dass s’ := s — ¢ eine weitere obere
Schranke fiir S ist. Finde ein Element s € S, so dass es strikt grosser ist als s’, was unsere
Annahme widerspricht (wir haben angenommen, dass s’ eine obere Schranke ist).

8



Beispiel 2.1 (Credit: Olivier Bitter).
Gegeben: M := {1+ 1:neN-{0}}
Gesucht: sup /max and inf / min (falls sie existieren)

Wir starten mit sup / max:

1.

D.

(Line 2): Es sollte offensichtlich sein, dass M; # (). Dass die obere Schranke(M;) #
(0 sollte ebenfalls klar sein, weil die Elemente abnehme mit wachsendem n. Wir
miissen das trotzdem noch formal beweisen (siehe Schritte 2 - 5).

. (Line 3): Wir erraten m™ = 2 und behaupten, dass 2 € obere Schranke(M;) ist.

(Line 4): Vn > 1:
1 1
n>lel>-e2>14-,
n n

damit haben wir gezeigt, dass 2 € obere Schranke(M).

. (Line 7): Wenn wir n = 1 wihlen, dann 1+ 1 = 2 = m" und damit haben wir

gezeigt, dass m* € M.

(Line 9): Wir fassen unser Resultat nochmals zusammen: sup M; = max M; = 2.

Nun berechnen wir inf / min:

1.

(Line 2): Es sollte wieder offensichtlich sein, dass My # (). Es sollte intuitiv klar sein,
dass die Elemente nie negative werden kénnen, damit ist untere Schranke(S) # (.

(Line 3): Wir erraten m~ = 1 und behaupten ”1 € untere Schranke(S)”.
(Line 4): Um zu sehen, dass 1 eine untere Schranke ist, machen wir die folgende

Umformungen: Vn > 1:

1 1
1>0&e->201+—->1
n n

(Line 7): Es sieht so aus als ob mit wachsendem n die Elemente sehr nahe an die 1
kommen ohne diese jemals zu erreichen. Deshalb kommen wir auf die Zeile 10 und
miissen ein Widerspruchsbeweis fiihren.

(Line 12): Unsere Widerspruchsannahme ist, dass 1 € M;. Aber dann existiert ein
n > 1, so dass folgendes gilt:

1 1
l=1+-0=-0=1
n n

was ein Widerspruch ist. Daraus folgt, dass M; kein Minimum besitzt.

. (Line 13): Nun mochten wir zeigen, dass 1 die grosste undere Schranke von M ist.

Unser Widerspruchsannahme ist, dass es eine grossere untere Schranke existiert mit
m’ =m~ + . Aber in dem Fall miisste folgendes gelten:

1 1
l4e<lt-oe<— (Yn>1)
n n

Dies steht im Widerspruch zum Theorem 1 (Version 2 vom archimedischem Prinzip).
Daraus folgt, dass inf M; = 1 und es existiert kein Minimum.
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