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1 Konvergenz und Divergenz einer Folge

Definition 1.1: Grenzwert einer Folge I

Eine Folge (a,)nenw konvergiert mit Grenzwert (Limes) a (konvergiert gegen a € R),
falls fiir jedes € > 0 ein Index N(e) > 1 gibt, so dass

la, —a| <& VYn> N(e).

Notation: lim,,_, a, = a.

Definition 1.2: Grenzwert einer Folge 11

Eine Folge (a,)nen konvergiert gegen a € R falls fir jedes ¢ > 0, die Menge der
Indizen n > 1 fiir die a,, ¢ (a — €, a + ¢€) endlich ist.
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Definition 1.3

Eine Folge heisst konvergent, falls sie ein Limes besitzt, andernfalls heisst sie divergent.

Beispiel 1.1.

Losung:

lim n = +oc0
n—+oo

(i) lim (1)
Losung:
lim (—1)" = divergiert

n—oo



Beispiel 1.2. Zu Zeigen: Beweise mit der Definition, dass das folgende gilt:  lim,, % =
0

Beweis:
Wir wéhlen ein beliebig kleines € > 0 (z.B. ¢ = 10~%odere = 107'Y). Gemiss Definition,
miissen wir zeigen, dass ein N = N(¢) € IN existiert, so dass fiir alle n > N folgendes gilt:

1 1
la, —a|=|——0l=|—| <e¢
n n
Wie macht man das? Wir losen nach n uaf
1 ! n>0 1
la, —a|=|—|<e = n>-.
n €

Wir wéihlen demzufolge N := [1], wobei [-] die Aufrundungsfunktion ist (Gaussklammer)
(z.B. [123.12] = 124). Fiir n > N gilt somit (nach Konsturktion):

——0|<ce¢
n

=

Das entspricht genau der Definition von  lim,, % = 0.

Satz 1

Wenn es ein Limes gibt, so ist dieser eindeutig.

2 Rechnen mit Grenzwerten

Bemerkung. (Dominanzen)
Es gelten die folgende Dominanzen:
(i) Firz - 00o: 1<log(x) <ax<z" (firn>0)<n® (firn>1) <zl <z”

(ii) Fira = 0: log(z) <a™ < L

— xn

Satz 2: Rechenregeln fiir Grenzwerte

Sind (an)nen und (b, )nen konvergent mit Grenzwerten a bzw. b, dann folgt:

(i) lim (an +b,) =a+b

(i

lim a, -b,=a-b
n—0o0

(iii) Falls b,, b # 0, so gilt: nl =1

lim a = qb

n—00

i)
)
(iv) Falls a,, <b,, Vn € N, so gilt: a<b
(v)
1)

lim f(a,) = f(a), Vf stetig.




Beispiel 2.1. Untersuche das Konvergenzverhalten von

(l + n2)995

1_|_n1990 ’

n

Losung:
Da der Nenner und der Zahler nicht konvergieren, ist die dritte Regel (iii) nicht direkt
anwendbar. Wir miissen die Terme wie folgt umformen, um das Problem zu umgehen.

(%—}—712)995 (nQ(%—i—l))g%
1+ 7199 - 1+ 1199

leQO(% + 1)995

”1990(711}’90 +1)

(# + 1)995
— + 1

n

— — .
Wegen - 27 0 und ﬁ MmN 0, erhalten wir

. (n_13 + 1)995 (0 4 1)995 1995
lim T = =

=1.

Satz 3: Sandwich-Theorem

Es seien die drei Folgen a, < b, < ¢, gegeben. Falls a, und ¢, konvergieren mit
lim a, = lim ¢, = L mit L € R, so konvergiert auch b, und es gilt
n—oo n—oo

lim b, = L.

n—0o0

Beispiel 2.2. Berechne lim g—"
n—oo

Losung:

Fir n > 1 gilt 2n > 1, somit erhalten wir:
2n 1
>

2n T 2n’

Fiir n > 4 gilt 2" > n?, somit erhalten wir:

2n 2n 2
< —

o~ p2  p

Damit erhalten wir fiir n > 4 also die folgenden Abschatzungen:

1 2n 2
<<=
2n T 2" T
Die rechte und linke Seite konvergieren gegen 0:
1
lim — = lim z =0
n—oo 2N n—oo 1
andwich-Thm . 2
Sandyich Th lim o 0
n—oo 21



3 Monotonie und Konvergenz

Definition 3.1

Eine Folge (a,)nen heisst monoton steigend, wenn fiir alle n € IN gilt:

Gp41 Z Q.

Definition 3.2

Eine Folge (a,,)nen heisst streng monoton steigend, wenn fiir alle n € IN gilt:

Ap+1 > Ay,.

Definition 3.3

Eine Folge (an)nen heisst monoton fallend, wenn fiir alle n € IN gilt:

Qnt1 S Q.

Definition 3.4

Eine Folge (a,)nen heisst streng monoton fallend, wenn fiir alle n € IN gilt:

Apt1 < Ap.

Bemerkung.

Um die Monotonie zu zeigen, kann man wie folgt vorgehen: Ersetzte n durch die kon-
tinuierliche Variable  und berechne die Ableitung nach z. Gilt a/(z) > 0 respektive
a'(z) <0, so ist die Folge monoton wachsend respektive monoton fallend.

Bemerkung.
Eine andere Variante ist, man zeigt direkt
anderen Falle.

An41
Qan

> 1 oder a,11 — a, > 0, analog fiir die

Definition 3.5: (3.3.1.)

(@n)nen heisst nach oben (unten) beschrankt, falls gilt
dbeR, VneN: a,<b (bzw. b < a,);

das heisst, falls die Menge A = {a,|n € N} nach oben (unten) beschrankt ist.

Satz 4: (3.3.1.)

Falls (a,)nen konvergent ist, dann ist (a,),en beschrankt.




Bemerkung.
Beschranktheit ist also notwendig, jedoch nicht hinreichend fiir Konvergenz, wie das
Beispiel der Folge a, = (—1)", n € IN, zeigt.

a,konvergent = a,beschrankt
ABER: a,konvergent < a, beschrankt

Satz 5: Satz iiber monotone Konvergenz (3.3.2.)

Sei (@, )nen nach oben beschrdnkt und monoton wachsend, das heisst, mit einer Zahl,
beR gilt
VnelN: o <...<a,<ap1 <...<0b.
Dann ist (a,)nen konvergent, und lim a, = supa, = b.
n—oo nelN
Analog, falls (a,)nen nach unten beschrankt und monoton fallend.

Bemerkung.
Die Merkregel ist:
Beschrankheit + Monotonie = Konvergenz.

Beispiel 3.1. Betrachte die rekursiv definierte Folge

ap\ 2
ag = O, Ant1 = <?> + 1

Zeige, dass die Folge a,, konvergiert. Was ist der Grenzwert?

Losung:
Wir berechnen einige Terme, um ein Gefiihl zu bekommen wie sich die Folge verhalt
5 89
=0 =1 =-=1.25 =—=1.39
Qo 3 a1 3 Qa2 4 ) as 64 )

Die Zahlen suggerieren, dass die Folge monoton wachsend ist.

Monotonie:
Anstatt a, 1 > a, direkt zu zeigen, zeigen wir die dazu dquivalente Aussage a, 1 —a, > 0.
Es gilt

2

n
an+l_anzz+1_an

a? —4a, +4

n

Beschrankheit:
Wir zeigen mittels vollstdndiger Induktion, dass a, < 2 Vn € N gilt. (Angenommen es
existiert ein Grenzwert, dann konnt ihr mit dem letzten Schritt den berechnen, aber dann
miisst ihr immer noch die Beschrénkheit zeigen.)
Induktionsverankerung (n = 0):

ap = 0 S 2 Vv



Induktoinsschritt (n +— n+ 1):
Wir nehmen an, dass a,, < 2 fiir ein fixes aber beliebtes n € IN gilt (Induktionsannahme,

IA). Es folgt
2 2

a IA
a"+1:Zn+1§Z+1:2'

Nun koénnen wir den Satz iiber monotone Konvergenz anwenden. Daraus folgt, dass a,
konvergiert, d.h. es gilt lim a, = a. Jetzt berechnen wir den Grenzwert a.

n—oo
Apy1 —7 Q
a 2 an, — a a2
an+1:<?n> ‘l—l — CL:Z—Fl
—92)2
(=27 _,
4
S (a—-2)72=0
S a=2.



