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1 Ohne Kategorie

Partialbruchzerlegung (”light”, mittels Beispiel erldutert)
1 A B
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Bemerke, wir haben einen Bruch nun in zwei Briiche aufgeteilt.

2 Potenzreihen (Erinnerung)

Definition 2.1

Eine Potenzreihe ist eine Reihe der Form
Z ™ = ag + a1 + asx® + ... + apx™ + ...
n=0

worin z eine reelle (oder komplexe) Variabe ist und (a, ), eine reelle (oder komplexe)
Folge ist.
Manchmal git man den allgemeineren Begriff einer Potzenzreihe mit einem Entwick-

lungspunkt zy an
Z an(x — x0)".

n=0




Definition 2.2

Der Konvergenzradius ist als das Supremum aller Zahlen p > 0 definiert, fiir welche
die Potenzreihe fir alls x mit |x — xy| < p konvergiert:

p = {|x—m0|

Satz 1: Konvergenzradius

o0
Z an(x — xo)" ist konvergent }

n=0

o0

Fiir den Konvergenzradius p der Potenzreihe f(z) = > a,z™ gelten die folgenden
n=0

Formeln:

_Qn
an+1

(i) p= lim (bei !, ™, ...)

n—oo

(ii) p= ——t—
lfsﬁP |an|

(bei ()™, z",!,...).

Beweis von (i):

o0
Wir wenden das Quotientenkriterium auf die Reihe ) a,2™ an. Wir erhalten absolute

n=0
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O
Beweis von (ii):

Wir wenden das Wurzelkriterium auf die Reihe ) a,2" an. Wir erhalten absolute Kon-
n=0



vergenz, falls

lim sup v/ |a,z™| = limsup v/|a,||z"|

n—oo n—oo

= limsup v/|a,| v/ |z

n—oo

= limsup v/|a,| - ||

n—oo

!
= |z| - limsup v/|a,| < 1.

n—o0

1
= x| < =:p.
l limsup,, .. v/|ax| g

0

Bemerkung.
Beide Formeln folgen unmittelbar aus dem Quotienten- bzw. Wurzelkriterium fiir (i) bzw.

(ii).
Bemerkung.

Aus (i) und (ii) folgt wie beim Quotienten- und Wurzelkriterium die absolute Konver-
genz.

Bemerkung. (Wichtig)
Am Rand des Konvergenzkreises, d.h. fiir den Fall |x — x| = p ist keine Aussage iiber
die Konvergenz moglich. Deshalb muss man diesen Fall einzeln betrachten.

Beispiel 2.1. Fiir welche x € R konvergiert die folgende Potenzreihe?

i%(\/n2+n—\/n2+l>n(x+l)”

n=1

Losung:



Wir berechnen den Konvergenzradius mit Hilfe von der Formel (ii):
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Also konvergiert die Potenzreihe fiir |z + 1| < 2 (%) und divergiert fiir |z + 1| > 2. Nun
berechnen wir den Konvergenzbereich in Abhéngigkeit von z fir (x):



—
*
"

= —(z+1)=2
&S —r—1=2
& —r=3
& r=-3

[ ]
(Z*Q r+1=2
& =1

= |jz+1<2&2e(-31)

Jetzt miissen wir nur noch den Fall |z + 1| = 2 abdecken:

o

1 n .
_ 2 _ 2 n __Herleitung analog wie oben ausgefiihrt
> (\/n +n—+vn +1) (£2)

n=1

= i 1 Ly (£2)"
n=1

2
A1+ A

R (£2)(1-3)
S\l 1+
=1

=20
n=1

Damit haben wir eine konvergente Majorante. Also konvergiert die Potenzreihe fiir z = 1
und z = —3.

Zusammenfassend: Die Potenzreihe konvergiert absolut fiir x € [—3,1] und divergiert
sonst.

Beispiel 2.2. Bestimme den Konvergenzbereich von: (;Jlr)ln (22 — 1)
n=0

Losung:

Wir betrachten zuerst (;}r)ln y" () mit y := (2% — 1). Nun bestimmen wir den Konver-
n=0



genzradius mit Hilfe von der Formel (i):

n—oo an+1

Die Potenzreihe (x) konvergiert somit absolut fiir |y| < 1 und divergiert fiir |y| > 1. Nun
betrachten wir den Fall y = 1:

= (—1 = (~1
2 +)11”=Z§1+)1 (+4)
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(n+1)(n+2)
= damit ist a,, monoton fallend

Leibnitz-Kriterium .
- (x%) konvergiert.



Jetzt betrachten wir den Fall y = —1:

Wir haben die harmonische Reihe erhalten und wissen deshalb, dass die Reihe in diesem
Fall divergiert. Damit konvergiert (x) fiir y € (—1,1]. Jetzt zum Schluss miissen wir
y = x® — 1 riicksubstituiren und bekommen:
“1l<y<l & -—-l1<z2-1<1
& 0<2?<2

=  B=[-v2,0)0U(0,V2].

3 Potenzreihendarstellung

Definition 3.1

Die Exponential-, Sinus- und Cosinusfunktion haben die folgende Potenzreihendarstel-
lung:

Beispiel 3.1. Berechne mit Hilfe der Potenzreihendarstellung von Exp den folgenden

. E -1
Grenzwert: lim 22@=1
x—0 a:

Losung:

Wir betrachten nun (i):




Jetzt miissen wir, ob (3) konvergiert und wenn ja fiir welche . Wir wenden deshalb nun
das Quotientenkriterium an:

x(nJrl)fl

. an+1 . n'
lim = lim |—m——
n—00 | n—o00 (’[’L —+ 1)' {L‘"_l

i z" n!
= lim
n—oo |nl(n 4 1) zn=1
I T
= lim |[—
2]

= lim
=0<1 = die Reihe konvergiert absolut.

Nun kénnen wir endlich (1) berechnen, dazu schreiben wir die ersten paar Terme der
Potenzreihendarstellung von Exp aus.

E —1 E 1
lim —Xp(a:) = lim —Xp(:c) - —
x—0 X z—0 X x
= lim Exp(z) !
z—0 X xT
L Er=1+140()

1
=lim—-+1+0(z) - -
x—0 x

=lim 1+ O(x)
z—0 N~

x—0

—0
=1

4 Stetigkeit
Definition 4.1: (4.1.2)

Sei f:QCRY—= R 20€Q, ac R

f hat an der Stelle o den Grenzwert a, falls fiir jede Folge (xy)gen in 2 mit koo, T
gilt f(xx) 2

Notation: lim f(z) = f(x9) = a.

T—rT0

Bemerkung.

Die Definition von Gernzwert mit Folgen von oben kann alternativ wie folgt geschrieben
werden:

lim f(x) =a < V(Zp)peny C€Q mit lim z, =z, gilt lim f(z,) = a.
n—oo

T—T0o n—00



Definition 4.2: (4.1.3)
Sei Q C RY, f:Q — R"™
(1) f heisst stetig an der Stelle xy € Q, falls lim f(z) = f(x¢) =: a existiert.

T—>T0

(ii) f heisst an der Stelle xo € Q\ Q stetig erginzbar, falls lim f(z) =: a existert.

Tr—x0

(In diesem Fall ist die duch f(zg) = a ergénzte Funktion f stegig an der Stelle
.’,Uo.)

Definition 4.3: (4.2.1)

Sei f:Q c R?Y— R™
f heisst stetig auf €2, falls f in jedem Punkt xq € € stetig ist.

Bemerkung.
Um eine gegebene Funktion f : 0 C R — R auf Stetigkeit an der Stelle z( zu iiberpriifen,
muss man also folgende drei Punkte nachweisen:

(i) f muss auf Q definiert sein

(ii) li_>m f(z) existiert, d.h. lim f(z) # oo und lim, f(z) = lim f(z)

T—=T0 Tz T—Ty

(iii) lim f(z) = f(zo0)

Tr—T0

Satz 2: (Rechenregeln fiir stetige Funktionen)
Seien f: Q — R und g : 2 — R stetig. Dann sind
(i) f+g
(i) f—yg
(iii) fg
(iv) % falls g # 0

stetig.
Ausserdem sind f: Q — R und g: f(2) — R stetig, so ist es auch go f : @ - R

Beweis von (i): Diese Aussage folgt direkt aus der Summenregel fiir Limites. Sei a € €.
Da f und g an der Stelle a stetig sind, gilt

lim f(x) = f(a) und lim g(z) = g(a).

Tr—a Tr—a

Mit der Regel ”Limes der Summe gleich Summe der Limites” folgt

lim (£ (2) + g(x)) = lim f(x) + lim g(x) = f(a) + g(a) = (f + g)(a).

r—a

Somit ist f + g an der Stelle a stetig. 0J
(Bemerkung. Fiir die anderen Regeln ist der Beweis analog.)
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Bemerkung.

Die Exponentialfunktion, der Sinus, der Cosinus, der Tangents (zwischen den Nullstellen
vom Cosinus), die hyperbolischen Funktionen und der Logarithmus sind alles stetige Funk-
tionen.

Bemerkung. (Wichtig)

Die Komposition stetiger Abbildungen ist auch stetig. Ausgeschlossen sind natiirlich
Problemstellen, z.B. der Nenner verschwindet oder es gibt Anderungen in der Definition
von der Funktion.

Beispiel 4.1. Ist die folgende Funktion stetig?

f(x):{xQ—Z, fiir oz < —2

fir x> -2

Losung:

Die Funktion f(x) ist links von —2 eine Komposition aus stetigen Funktionen und ist
somit auch stetig. Die Funktion f(x) ist rechts von —2 eine Komposition aus rechtsseitig
stetigen Funktionen und ist somit, ausgenommen im Punkt z = 3, rechtsseitig stetig.

i) L 2-2=2
), tim @

(i) f(=2)=—3
2# -1 = f(x) ist nicht stetig an der Stelle —2.

Beispiel 4.2. Ist die folgende Funktion stetig?

f) = {132, firx <1

2% — 4z + 4, fir x> 1

Losung:

Die Funktion f(z) ist links von 1 eine Komposition aus linksseitig stetigen Funktionen
und ist somit auch linksseitig stetig. Die Funktion f(x) ist rechts von 1 eine Komposition
aus stetigen Funktionen und ist somit auch stetig.

(i) f(1) =1
(i) lim 22 —4z+4=1
z—1+
&) : :
(1) = (i) = f(x) ist stetig an der Stelle 1.

Beispiel 4.3. Gegeben sei eine Funktion

8a + 16x fiir z < 2
fl@)=4", )
a*(x+2) fir x> 2

Bestimme a € R, so dass f(x) in z = 2 stetig ist.

Losung: Die Funktionen x +— 8a + 16x und z + a?(x + 2) sind stetig. Deshalb ist die
Funktion f stetig ausserhalb des Punktes 2 und sie ist rechtsseitig stetig im Punkt 2.

11



Damit sie an der Stelle 2 noch stetig ist, muss zusétzlich folgendes gelten:

lim f(x) = /(2)

< lim 8a+ 16z =a%-4

T2~
& 8a+32=d"-4
& 4a*—-8a—-32=0
8+ /64 —4-4-(-32)
2-4

< Q12 =

 8++/576
- =

824 |4
I T

Daraus folgt, dass f fiir a = —2 und a = 4 an der Stelle x = 2 stetig ist.

Satz 3: Zwischenwertsatz

Sei f : [a,b] = R stetig mit f(a) < f(b). Dann gibt es zu jedem y € [f(a), f(b)] ein
x € [a,b] mit f(z) =y.

Beispiel 4.4. Zeige: Das Polynom f(z) = 4z — 62® + 3z — 2 besitzt eine Nullstelle,
welche zwischen 1 und 2 liegt.

Losung:

o Stetigkeit: fist auf [1, 2] stetig, weil Polynome Kompositionen aus stetigen Funktion
sind.

e Wir werten f am Rand also an den Stellen x = 1 und =z = 2 aus:

f1)=4—643-2=—-1<0
f(2)=32-2446-2>0

Geméss dem Zwischenwertsatz muss als f alle Werte zwischen f(1) (negativ) und
f(2) (positiv) im Intervall [1,2] annehmen. Insbesondere gibt es ein z* € (1,2), mit
f(z*) = 0. Damit ist 2* die gesuchte Nullstelle des Polynoms.

Beispiel 4.5. Besitzt die Gleichung sin(2z) — ¢* = —5 eine Losung im Intervall [0, 7]?

Losung:
Wir definierten die Funktion f(z) = sin(2z) — e + 5.

sin(2x) — e” = —5 besitzt eine Losung in [0,7] < f(z) =0

e Stetigkeit: Da der Sinus und die Exponentialfunktion stetig sind, ist f eine stetige
Funktion.
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e Wir werten f am Rand also an den Stellen x = 0 und = = 7 aus:
f(0) =sin(0) —e®+5=4>0

f(m) =sin(27) — €™ +5
=—-¢"+5<0

Geméss dem Zwischenwertsatz gitbt es also ein z* € [0, 7], so dass f(z*) = 0. Damit
ist x* die gesuchte Losung der Gleichung im Intervall [0, 7].
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