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1 Ohne Kategorie

Partialbruchzerlegung (”light”, mittels Beispiel erläutert)

1

(x+ 2)(x− 1)
!

=
A

x+ 2
+

B

x− 1

=
A(x− 1) +B(x+ 2)

(x+ 2)(x− 1)

=
(A+B)x+ (2B − A) · 1

(x+ 2)(x− 1)

Koeffizientenvergleich:

1
!

= (A+B)x+ (2B − A) · 1
⇒ A+B = 0 ∧ 2B − A = 1

⇔ A = −B (∗)
⇒ 2B − A = 1

A=−B
=⇒ 2B − (−B) = 1

⇔ 3B = 1

⇔ B =
1

3
(∗) ∧ B= 1

3=⇒ A = −1

3

=⇒ 1

(x+ 2)(x− 1)
=
−1

3

x+ 2
+

1
3

x+ 1
= − 1

3(x+ 2)
+

1

3(x+ 1)

Bemerke, wir haben einen Bruch nun in zwei Brüche aufgeteilt.

2 Potenzreihen (Erinnerung)

Definition 2.1

Eine Potenzreihe ist eine Reihe der Form

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + ...+ anx
n + ...

worin x eine reelle (oder komplexe) Variabe ist und (an)nN eine reelle (oder komplexe)
Folge ist.
Manchmal git man den allgemeineren Begriff einer Potzenzreihe mit einem Entwick-
lungspunkt x0 an

∞∑
n=0

an(x− x0)n.
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Definition 2.2

Der Konvergenzradius ist als das Supremum aller Zahlen ρ ≥ 0 definiert, für welche
die Potenzreihe für alls x mit |x− x0| < ρ konvergiert:

ρ :=

{
|x− x0|

∣∣∣∣∣
∞∑
n=0

an(x− x0)n ist konvergent

}

Satz 1: Konvergenzradius

Für den Konvergenzradius ρ der Potenzreihe f(x) =
∞∑
n=0

anx
n gelten die folgenden

Formeln:

(i) ρ = lim
n→∞

∣∣∣ an
an+1

∣∣∣ (bei !, xn, ...)

(ii) ρ = 1

lim sup
n→∞

n
√
|an|

(bei (·)n, xn, !, ...).

Beweis von (i):

Wir wenden das Quotientenkriterium auf die Reihe
∞∑
n=0

anx
n an. Wir erhalten absolute

Konvergenz, falls

lim
n→∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1x

an

∣∣∣∣
= lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ |x|
= |x| · lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ !
< 1.

⇔ |x| < 1

limn→∞

∣∣∣an+1

an

∣∣∣
= lim

n→∞

∣∣∣∣ anan+1

∣∣∣∣ =: ρ.

�

Beweis von (ii):

Wir wenden das Wurzelkriterium auf die Reihe
∞∑
n=0

anx
n an. Wir erhalten absolute Kon-
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vergenz, falls

lim sup
n→∞

n
√
|anxn| = lim sup

n→∞

n
√
|an||xn|

= lim sup
n→∞

n
√
|an|

n
√
|xn|

= lim sup
n→∞

n
√
|an| · |x|

= |x| · lim sup
n→∞

n
√
|an|

!
< 1.

⇔ |x| < 1

lim supn→∞
n
√
|an|

=: ρ.

�

Bemerkung.
Beide Formeln folgen unmittelbar aus dem Quotienten- bzw. Wurzelkriterium für (i) bzw.
(ii).

Bemerkung.
Aus (i) und (ii) folgt wie beim Quotienten- und Wurzelkriterium die absolute Konver-
genz.

Bemerkung. (Wichtig)
Am Rand des Konvergenzkreises, d.h. für den Fall |x − x0| = ρ ist keine Aussage über
die Konvergenz möglich. Deshalb muss man diesen Fall einzeln betrachten.

Beispiel 2.1. Für welche x ∈ R konvergiert die folgende Potenzreihe?

∞∑
n=1

1

n2

(√
n2 + n−

√
n2 + 1

)n
(x+ 1)n

Lösung:
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Wir berechnen den Konvergenzradius mit Hilfe von der Formel (ii):

ρ̃ = lim sup
n→∞

n
√
|an|

= lim sup
n→∞

n

√√√√√√
∣∣∣∣∣∣∣

1

n2︸︷︷︸
>0

√n2 + n−
√
n2 + 1︸ ︷︷ ︸

≥0

n
∣∣∣∣∣∣∣

= lim sup
n→∞

n

√
1

n2

(√
n2 + n−

√
n2 + 1

)n
= lim sup

n→∞

1
n√
n2

(√
n2 + n−

√
n2 + 1

)
= lim sup

n→∞

1

( n
√
n)2

(√
n2 + n−

√
n2 + 1

)
= lim sup

n→∞

1

( n
√
n)2

(√
n2 + n−

√
n2 + 1

)
·
√
n2 + n+

√
n2 + 1√

n2 + n+
√
n2 + 1

= lim sup
n→∞

1

( n
√
n)2

n2 + n− (n2 + 1)√
n2 + n+

√
n2 + 1

= lim sup
n→∞

1

( n
√
n)2

n2 + n− n2 − 1√
n2 + n+

√
n2 + 1

= lim sup
n→∞

1

( n
√
n)2

n− 1√
n2 + n+

√
n2 + 1

= lim sup
n→∞

1

( n
√
n)2

n(1− 1
n
)√

n2(1 + 1
n
) +

√
n2(1 + 1

n2 )

= lim sup
n→∞

1

( n
√
n)2

n(1− 1
n
)

|n|
√

1 + 1
n

+ |n|
√

1 + 1
n2

n>0
= lim sup

n→∞

1

( n
√
n)2

n(1− 1
n
)

n
√

1 + 1
n

+ n
√

1 + 1
n2

= lim sup
n→∞

1

( n
√
n)2

n(1− 1
n
)

n
(√

1 + 1
n

+
√

1 + 1
n2

)
= lim sup

n→∞

1

( n
√
n)2

1− 1
n√

1 + 1
n

+
√

1 + 1
n2

=
1

12

1− 0√
1 + 0 +

√
1 + 0

=
1

2

⇒ ρ =
1

ρ̃
= 2

Also konvergiert die Potenzreihe für |x + 1| < 2 (∗) und divergiert für |x + 1| > 2. Nun
berechnen wir den Konvergenzbereich in Abhängigkeit von x für (∗):
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•

(∗)⇒ −(x+ 1) = 2

⇔ −x− 1 = 2

⇔ −x = 3

⇔ x = −3

•

(∗)⇒ x+ 1 = 2

⇔ x = 1

•

=⇒ |x+ 1| < 2⇔ x ∈ (−3, 1)

Jetzt müssen wir nur noch den Fall |x+ 1| = 2 abdecken:

∞∑
n=1

1

n2

(√
n2 + n−

√
n2 + 1

)n
(±2)n =Herleitung analog wie oben ausgeführt...

=
∞∑
n=1

1

n2

 1− 1
n√

1 + 1
n

+
√

1 + 1
n2

n

(±2)n

=
∞∑
n=1

1

n2

 (±2)(1− 1
n
)√

1 + 1
n

+
√

1 + 1
n2

n

≤
∞∑
n=1

1

n2

Damit haben wir eine konvergente Majorante. Also konvergiert die Potenzreihe für x = 1
und x = −3.
Zusammenfassend : Die Potenzreihe konvergiert absolut für x ∈ [−3, 1] und divergiert
sonst.

Beispiel 2.2. Bestimme den Konvergenzbereich von:
∞∑
n=0

(−1)n
n+1

(x2 − 1)n.

Lösung :

Wir betrachten zuerst
∞∑
n=0

(−1)n
n+1

yn (∗) mit y := (x2− 1). Nun bestimmen wir den Konver-
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genzradius mit Hilfe von der Formel (i):

ρ = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣
= lim

n→∞

∣∣∣∣ 1

n+ 1

(n+ 1) + 1

1

∣∣∣∣
= lim

n→∞

∣∣∣∣n+ 2

n+ 1

∣∣∣∣
n>0
= lim

n→∞

n+ 2

n+ 1

= lim
n→∞

n(1 + 2
n
)

n(1 + 1
n
)

= lim
n→∞

1 + 2
n

1 + 1
n

= 1

Die Potenzreihe (∗) konvergiert somit absolut für |y| < 1 und divergiert für |y| > 1. Nun
betrachten wir den Fall y = 1:

∞∑
n=0

(−1)n

n+ 1
1n =

∞∑
n=0

(−1)n

n+ 1
(∗∗)

(i) lim
n→∞

1
n+1

= 0

(ii) 1
n+1
≥ 0

(iii)

an ≥ an+1 ⇔ an − an+1 ≥ 0

⇔ 1

n+ 1
− 1

(n+ 1) + 1
≥ 0

⇔ 1

n+ 1
− 1

n+ 2
≥ 0

⇔ n+ 2− (n+ 1)

(n+ 1)(n+ 2)
≥ 0

⇔ n+ 2− n− 1

(n+ 1)(n+ 2)
≥ 0

⇔ 1

(n+ 1)(n+ 2)
≥ 0

⇒ damit ist an monoton fallend

Leibnitz-Kriterium
=⇒ (∗∗) konvergiert.
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Jetzt betrachten wir den Fall y = −1:

∞∑
n=0

(−1)n

n+ 1
(−1)n =

∞∑
n=0

(−1)2n

n+ 1

=
∞∑
n=0

1

n+ 1

=
∞∑
n=1

1

n

Wir haben die harmonische Reihe erhalten und wissen deshalb, dass die Reihe in diesem
Fall divergiert. Damit konvergiert (∗) für y ∈ (−1, 1]. Jetzt zum Schluss müssen wir
y = x2 − 1 rücksubstituiren und bekommen:

−1 < y ≤ 1 ⇔ −1 < x2 − 1 ≤ 1

⇔ 0 < x2 ≤ 2

=⇒ B = [−
√

2, 0) ∪ (0,
√

2].

3 Potenzreihendarstellung

Definition 3.1

Die Exponential-, Sinus- und Cosinusfunktion haben die folgende Potenzreihendarstel-
lung:

(i) Exp(x) =
∞∑
n=0

xn

n!

(ii) Sin(x) =
∞∑
n=0

(−1)n · x2n+1

(2n+1)!

(iii) Cos(x) =
∞∑
n=0

(−1)n · x2n
(2n)!

Beispiel 3.1. Berechne mit Hilfe der Potenzreihendarstellung von Exp den folgenden
Grenzwert: lim

x→0

Exp(x)−1
x

.

Lösung :

Exp(x)− 1

x
=

Exp(x)

x︸ ︷︷ ︸
(i)

−1

x
(1)

Wir betrachten nun (i):

Exp(x)

x
=

∑∞
n=0

xn

n!

x
(2)

=
∞∑
n=0

xn−1

n!
(3)
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Jetzt müssen wir, ob (3) konvergiert und wenn ja für welche x. Wir wenden deshalb nun
das Quotientenkriterium an:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣x(n+1)−1

(n+ 1)!

n!

xn−1

∣∣∣∣
= lim

n→∞

∣∣∣∣ xn

n!(n+ 1)

n!

xn−1

∣∣∣∣
= lim

n→∞

∣∣∣∣ x

(n+ 1)

∣∣∣∣
= lim

n→∞

|x|
(n+ 1)

= 0 < 1 ⇒ die Reihe konvergiert absolut.

Nun können wir endlich (1) berechnen, dazu schreiben wir die ersten paar Terme der
Potenzreihendarstellung von Exp aus.

lim
x→0

Exp(x)− 1

x
= lim

x→0

Exp(x)

x
− 1

x

= lim
x→0

Exp(x)

x︸ ︷︷ ︸
∞∑

n=0

xn−1

n!
= 1

x
+1+O(x)

−1

x

= lim
x→0

1

x
+ 1 +O(x)− 1

x
= lim

x→0
1 + O(x)︸ ︷︷ ︸

x→0−−→0

= 1.

4 Stetigkeit

Definition 4.1: (4.1.2)

Sei f : Ω ⊂ Rd → Rn, x0 ∈ Ω, a ∈ Rn.

f hat an der Stelle x0 den Grenzwert a, falls für jede Folge (xk)k∈N in Ω mit xk
k→∞−−−→ x0

gilt f(xk)
k→∞−−−→ a.

Notation: lim
x→x0

f(x) = f(x0) = a.

Bemerkung.
Die Definition von Gernzwert mit Folgen von oben kann alternativ wie folgt geschrieben
werden:

lim
x→x0

f(x) = a ⇔ ∀(xn)n∈N ⊆ Ω mit lim
n→∞

xn = x0, gilt lim
n→∞

f(xn) = a.
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Definition 4.2: (4.1.3)

Sei Ω ⊂ Rd, f : Ω→ Rn.

(i) f heisst stetig an der Stelle x0 ∈ Ω, falls lim
x→x0

f(x) = f(x0) =: a existiert.

(ii) f heisst an der Stelle x0 ∈ Ω \ Ω stetig ergänzbar, falls lim
x→x0

f(x) =: a existert.

(In diesem Fall ist die duch f(x0) = a ergänzte Funktion f stegig an der Stelle
x0.)

Definition 4.3: (4.2.1)

Sei f : Ω ⊂ Rd → Rn.
f heisst stetig auf Ω, falls f in jedem Punkt x0 ∈ Ω stetig ist.

Bemerkung.
Um eine gegebene Funktion f : Ω ⊂ R→ R auf Stetigkeit an der Stelle x0 zu überprüfen,
muss man also folgende drei Punkte nachweisen:

(i) f muss auf Ω definiert sein

(ii) lim
x→x0

f(x) existiert, d.h. lim
x→x0

f(x) 6=∞ und lim
x→x+0

f(x) = lim
x→x−0

f(x)

(iii) lim
x→x0

f(x) = f(x0)

Satz 2: (Rechenregeln für stetige Funktionen)

Seien f : Ω→ R und g : Ω→ R stetig. Dann sind

(i) f + g

(ii) f − g

(iii) fg

(iv) f
g

falls g 6= 0

stetig.
Ausserdem sind f : Ω→ R und g : f(Ω)→ R stetig, so ist es auch g ◦ f : Ω→ R

Beweis von (i): Diese Aussage folgt direkt aus der Summenregel für Limites. Sei a ∈ Ω.
Da f und g an der Stelle a stetig sind, gilt

lim
x→a

f(x) = f(a) und lim
x→a

g(x) = g(a).

Mit der Regel ”Limes der Summe gleich Summe der Limites” folgt

lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x) = f(a) + g(a) = (f + g)(a).

Somit ist f + g an der Stelle a stetig. �
(Bemerkung. Für die anderen Regeln ist der Beweis analog.)
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Bemerkung.
Die Exponentialfunktion, der Sinus, der Cosinus, der Tangents (zwischen den Nullstellen
vom Cosinus), die hyperbolischen Funktionen und der Logarithmus sind alles stetige Funk-
tionen.

Bemerkung. (Wichtig)
Die Komposition stetiger Abbildungen ist auch stetig. Ausgeschlossen sind natürlich
Problemstellen, z.B. der Nenner verschwindet oder es gibt Änderungen in der Definition
von der Funktion.

Beispiel 4.1. Ist die folgende Funktion stetig?

f(x) =

{
x2 − 2, für x < −2
1

x−3 , für x ≥ −2

Lösung :
Die Funktion f(x) ist links von −2 eine Komposition aus stetigen Funktionen und ist
somit auch stetig. Die Funktion f(x) ist rechts von −2 eine Komposition aus rechtsseitig
stetigen Funktionen und ist somit, ausgenommen im Punkt x = 3, rechtsseitig stetig.

(i) lim
x→(−2)−

x2 − 2 = 2

(ii) f(−2) = −1
5

(i)&(ii)
=⇒ 2 6= −1

5
⇒ f(x) ist nicht stetig an der Stelle −2.

Beispiel 4.2. Ist die folgende Funktion stetig?

f(x) =

{
x2, für x ≤ 1

x2 − 4x+ 4, für x > 1

Lösung :
Die Funktion f(x) ist links von 1 eine Komposition aus linksseitig stetigen Funktionen
und ist somit auch linksseitig stetig. Die Funktion f(x) ist rechts von 1 eine Komposition
aus stetigen Funktionen und ist somit auch stetig.

(i) f(1) = 1

(ii) lim
x→1+

x2 − 4x+ 4 = 1

(i)&(ii)
=⇒ (i) = (ii) ⇒ f(x) ist stetig an der Stelle 1.

Beispiel 4.3. Gegeben sei eine Funktion

f(x) =

{
8a+ 16x für x < 2

a2(x+ 2) für x ≥ 2

Bestimme a ∈ R, so dass f(x) in x = 2 stetig ist.

Lösung : Die Funktionen x 7→ 8a + 16x und x 7→ a2(x + 2) sind stetig. Deshalb ist die
Funktion f stetig ausserhalb des Punktes 2 und sie ist rechtsseitig stetig im Punkt 2.
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Damit sie an der Stelle 2 noch stetig ist, muss zusätzlich folgendes gelten:

lim
x→2−

f(x)
!

= f(2)

⇔ lim
x→2−

8a+ 16x = a2 · 4

⇔ 8a+ 32 = a2 · 4
⇔ 4a2 − 8a− 32 = 0

⇔ a1,2 =
8±

√
64− 4 · 4 · (−32)

2 · 4

=
8±
√

576

8

=
8± 24

8
=

{
4

−2

Daraus folgt, dass f für a = −2 und a = 4 an der Stelle x = 2 stetig ist.

Satz 3: Zwischenwertsatz

Sei f : [a, b] → R stetig mit f(a) ≤ f(b). Dann gibt es zu jedem y ∈ [f(a), f(b)] ein
x ∈ [a, b] mit f(x) = y.

Beispiel 4.4. Zeige: Das Polynom f(x) = 4x3 − 6x2 + 3x − 2 besitzt eine Nullstelle,
welche zwischen 1 und 2 liegt.

Lösung :

• Stetigkeit : f ist auf [1, 2] stetig, weil Polynome Kompositionen aus stetigen Funktion
sind.

• Wir werten f am Rand also an den Stellen x = 1 und x = 2 aus:

f(1) = 4− 6 + 3− 2 = −1 < 0

f(2) = 32− 24 + 6− 2 > 0

Gemäss dem Zwischenwertsatz muss als f alle Werte zwischen f(1) (negativ) und
f(2) (positiv) im Intervall [1, 2] annehmen. Insbesondere gibt es ein x∗ ∈ (1, 2), mit
f(x∗) = 0. Damit ist x∗ die gesuchte Nullstelle des Polynoms.

Beispiel 4.5. Besitzt die Gleichung sin(2x)− ex = −5 eine Lösung im Intervall [0, π]?

Lösung :
Wir definierten die Funktion f(x) = sin(2x)− ex + 5.

sin(2x)− ex = −5 besitzt eine Lösung in [0, π] ⇔ f(x) = 0

• Stetigkeit : Da der Sinus und die Exponentialfunktion stetig sind, ist f eine stetige
Funktion.
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• Wir werten f am Rand also an den Stellen x = 0 und x = π aus:

f(0) = sin(0)− e0 + 5 = 4 ≥ 0

f(π) = sin(2π)− eπ + 5

= −eπ + 5 ≤ 0

Gemäss dem Zwischenwertsatz gitbt es also ein x∗ ∈ [0, π], so dass f(x∗) = 0. Damit
ist x∗ die gesuchte Lösung der Gleichung im Intervall [0, π].
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