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1 Injektiviät , Surjektivität, Bijektivität

Definition 1.1

Eine Abbildung f : X → Y heisst injektiv, falls

∀x1, x2 ∈ X : x1 6= x2 ⇒ f(x1) 6= f(x2).

(In Worten: Verschiedene Elemente aus X werden auf verschiedene Bilder in Y abge-
bildet.)

Definition 1.2

Eine Abbildung f : X → Y heisst surjektiv, falls

∀y ∈ Y ∃x ∈ X : f(x) = y.

(In Worten: Jedes Element aus Y wird von f ”getroffen”.)

Definition 1.3

Eine Abbildung f : X → Y heisst bijektiv, falls

∀y ∈ Y ∃!x ∈ X : f(x) = y.

(In Worten: Jedes Element aus Y wird von f genau eins ”getroffen”.)

Beispiel 1.1. Seien f : X → Y und g : Y → Z Abbildungen, so dass g ◦ f : X → Z
bijektiv ist. Beweise die folgenden Aussagen, oder widerlege mit einem Gegenbeispiel.

(a) f ist injektiv

(b) f ist surjektiv

(c) g ist injektiv

(d) g ist surjektiv

Lösung :

(a) f ist injektiv. Seien x, x′ ∈ X verschieden. Nehme an, dass f(x) = f(x′). Dann folgt
auch

(g ◦ f)(x) = g(f(x)) = g(f(x′)) = (g ◦ f)(x′).

Da g ◦ f injektiv ist [folgt weil g ◦ f bijektiv ist], folgt x = x′, im Widerspruch zur
Annahme, dass die beiden Elemente verschieden sind. Also gilt f(x) 6= f(x′).

(b) f ist im Allgemeinen nicht surjektiv. Gegenbeispiel:
Sei X = {x}, Y = {x, x′}, mit x 6= x′, und Z = X. Setze f(x) = x und g(x) = g(x′) =
x. Dann ist g ◦ f die Identität auf X und somit bijektiv [wie in der Aufgabenstellung
gegeben]. Die Funktion f ist nun allerdings nicht surjektiv, da x′ nicht im Bild con f
liegt.
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(c) g ist im Allgemeinen nicht injektiv. Als Gegenbeispiel nehme man dasjenige aus
Aufgabenteil (b). Dort ist g nicht injektiv, da x und x′ beide auf x abgebildet werden.

(d) g ist surjektiv. Da g ◦ f surjektiv ist [folgt weil g ◦ f bijektiv ist], gilt Z = (g ◦ f)(X).
Aber

Z = (g ◦ f)(X) = g(f(X)) ⊂ g(Y ) ⊂ Z.

Also g(Y ) = Z, und g ist surjektiv.

2 Potenzreihendarstellung (Erinnerung)

Definition 2.1

Die Exponential-, Sinus- und Cosinusfunktion haben die folgende Potenzreihendarstel-
lung:

(i) Exp(x) =
∞∑
n=0

xn

n!

(ii) Sin(x) =
∞∑
n=0

(−1)n · x2n+1

(2n+1)!

(iii) Cos(x) =
∞∑
n=0

(−1)n · x2n
(2n)!

Beispiel 2.1. Berechne mit Hilfe der Potenzreihendarstellung von Exp den folgenden
Grenzwert: lim

x→0

Exp(x)−1
x

.

Lösung :

Exp(x)− 1

x
=

Exp(x)

x︸ ︷︷ ︸
(i)

−1

x
(1)

Wir betrachten nun (i):

Exp(x)

x
=

∑∞
n=0

xn

n!

x
(2)

=
∞∑
n=0

xn−1

n!
(3)

Jetzt müssen wir, ob (3) konvergiert und wenn ja für welche x. Wir wenden deshalb nun
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das Quotientenkriterium an:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣x(n+1)−1

(n+ 1)!

n!

xn−1

∣∣∣∣
= lim

n→∞

∣∣∣∣ xn

n!(n+ 1)

n!

xn−1

∣∣∣∣
= lim

n→∞

∣∣∣∣ x

(n+ 1)

∣∣∣∣
= lim

n→∞

|x|
(n+ 1)

= 0 < 1 ⇒ die Reihe konvergiert absolut.

Nun können wir endlich (1) berechnen, dazu schreiben wir die ersten paar Terme der
Potenzreihendarstellung von Exp aus.

lim
x→0

Exp(x)− 1

x
= lim

x→0

Exp(x)

x
− 1

x

= lim
x→0

Exp(x)

x︸ ︷︷ ︸
∞∑

n=0

xn−1

n!
= 1

x
+1+O(x)

−1

x

= lim
x→0

1

x
+ 1 +O(x)− 1

x
= lim

x→0
1 + O(x)︸ ︷︷ ︸

x→0−−→0

= 1.

Satz 1: Leibniz Satz 2.7.12 (Burger Skript)

Sei (an)n≤1 monoton fallend mit an ≥ 0, ∀n ≥ 1 and limn→∞ an = 0. Dann konvergiert

S :=
∞∑
k=1

(−1)k+1ak

und es gilt:
a1 − a2 ≤ S ≤ a1.

3 Stetigkeit

Definition 3.1: 3.2.1 (Burger Skript)

Sei D ⊂ R, x0 ∈ D. Die Funktion f : D → R ist in x0 stetig, falls es für jedes ε > 0
ein δ > 0 gibt, so dass für alle x ∈ D die Implikation

|x− x0| < δ =⇒ |f(x)− f(x0)| < ε
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gilt.

Definition 3.2: 3.2.1 (Quantorenversion von oben)

Sei D ⊂ R, x0 ∈ D. Die Funktion f : D → R ist in x0 stetig, falls

∀ε > 0,∃δ > 0 : |x− x0| < δ =⇒ |f(x)− f(x0)| < ε, ∀x ∈ D

gilt.

Definition 3.3: (4.1.2)

Sei f : Ω ⊂ Rd → Rn, x0 ∈ Ω, a ∈ Rn.

f hat an der Stelle x0 den Grenzwert a, falls für jede Folge (xk)k∈N in Ω mit xk
k→∞−−−→ x0

gilt f(xk)
k→∞−−−→ a.

Notation: lim
x→x0

f(x) = f(x0) = a.

Bemerkung.
Die Definition von Gernzwert mit Folgen von oben kann alternativ wie folgt geschrieben
werden:

lim
x→x0

f(x) = a ⇔ ∀(xn)n∈N ⊆ Ω mit lim
n→∞

xn = x0, gilt lim
n→∞

f(xn) = a.

Definition 3.4: (4.1.3)

Sei Ω ⊂ Rd, f : Ω→ Rn.

(i) f heisst stetig an der Stelle x0 ∈ Ω, falls lim
x→x0

f(x) = f(x0) =: a existiert.

(ii) f heisst an der Stelle x0 ∈ Ω \ Ω stetig ergänzbar, falls lim
x→x0

f(x) =: a existert.

(In diesem Fall ist die duch f(x0) = a ergänzte Funktion f stegig an der Stelle
x0.)

Definition 3.5: (4.2.1)

Sei f : Ω ⊂ Rd → Rn.
f heisst stetig auf Ω, falls f in jedem Punkt x0 ∈ Ω stetig ist.

Bemerkung.
Um eine gegebene Funktion f : Ω ⊂ R→ R auf Stetigkeit an der Stelle x0 zu überprüfen,
muss man also folgende drei Punkte nachweisen:

(i) f muss auf Ω definiert sein

(ii) lim
x→x0

f(x) existiert, d.h. lim
x→x0

f(x) 6=∞ und lim
x→x+0

f(x) = lim
x→x−0

f(x)

(iii) lim
x→x0

f(x) = f(x0)
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Satz 2: (Rechenregeln für stetige Funktionen)

Seien f : Ω→ R und g : Ω→ R stetig. Dann sind

(i) f + g

(ii) f − g

(iii) fg

(iv) f
g

falls g 6= 0

stetig.
Ausserdem sind f : Ω→ R und g : f(Ω)→ R stetig, so ist es auch g ◦ f : Ω→ R

Beweis von (i): Diese Aussage folgt direkt aus der Summenregel für Limites. Sei a ∈ Ω.
Da f und g an der Stelle a stetig sind, gilt

lim
x→a

f(x) = f(a) und lim
x→a

g(x) = g(a).

Mit der Regel ”Limes der Summe gleich Summe der Limites” folgt

lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x) = f(a) + g(a) = (f + g)(a).

Somit ist f + g an der Stelle a stetig. �
(Bemerkung. Für die anderen Regeln ist der Beweis analog.)

Bemerkung.
Die Exponentialfunktion, der Sinus, der Cosinus, der Tangents (zwischen den Nullstellen
vom Cosinus), die hyperbolischen Funktionen und der Logarithmus sind alles stetige Funk-
tionen.

Bemerkung. (Wichtig)
Die Komposition stetiger Abbildungen ist auch stetig. Ausgeschlossen sind natürlich
Problemstellen, z.B. der Nenner verschwindet oder es gibt Änderungen in der Definition
von der Funktion.

Beispiel 3.1. Ist die folgende Funktion stetig?

f(x) =

{
x2 − 2, für x < −2
1

x−3 , für x ≥ −2

Lösung :
Die Funktion f(x) ist links von −2 eine Komposition aus stetigen Funktionen und ist
somit auch stetig. Die Funktion f(x) ist rechts von −2 eine Komposition aus rechtsseitig
stetigen Funktionen und ist somit, ausgenommen im Punkt x = 3, rechtsseitig stetig.

(i) lim
x→(−2)−

x2 − 2 = 2

(ii) f(−2) = −1
5

(i)&(ii)
=⇒ 2 6= −1

5
⇒ f(x) ist nicht stetig an der Stelle −2.
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Beispiel 3.2. Ist die folgende Funktion stetig?

f(x) =

{
x2, für x ≤ 1

x2 − 4x+ 4, für x > 1

Lösung :
Die Funktion f(x) ist links von 1 eine Komposition aus linksseitig stetigen Funktionen
und ist somit auch linksseitig stetig. Die Funktion f(x) ist rechts von 1 eine Komposition
aus stetigen Funktionen und ist somit auch stetig.

(i) f(1) = 1

(ii) lim
x→1+

x2 − 4x+ 4 = 1

(i)&(ii)
=⇒ (i) = (ii) ⇒ f(x) ist stetig an der Stelle 1.

Beispiel 3.3. Gegeben sei eine Funktion

f(x) =

{
8a+ 16x für x < 2

a2(x+ 2) für x ≥ 2

Bestimme a ∈ R, so dass f(x) in x = 2 stetig ist.

Lösung : Die Funktionen x 7→ 8a + 16x und x 7→ a2(x + 2) sind stetig. Deshalb ist die
Funktion f stetig ausserhalb des Punktes 2 und sie ist rechtsseitig stetig im Punkt 2.
Damit sie an der Stelle 2 noch stetig ist, muss zusätzlich folgendes gelten:

lim
x→2−

f(x)
!

= f(2)

⇔ lim
x→2−

8a+ 16x = a2 · 4

⇔ 8a+ 32 = a2 · 4
⇔ 4a2 − 8a− 32 = 0

⇔ a1,2 =
8±

√
64− 4 · 4 · (−32)

2 · 4

=
8±
√

576

8

=
8± 24

8
=

{
4

−2

Daraus folgt, dass f für a = −2 und a = 4 an der Stelle x = 2 stetig ist.

Satz 3: Zwischenwertsatz

Sei f : [a, b] → R stetig mit f(a) ≤ f(b). Dann gibt es zu jedem y ∈ [f(a), f(b)] ein
x ∈ [a, b] mit f(x) = y.

Beispiel 3.4. Zeige: Das Polynom f(x) = 4x3 − 6x2 + 3x − 2 besitzt eine Nullstelle,
welche zwischen 1 und 2 liegt.

Lösung :
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• Stetigkeit : f ist auf [1, 2] stetig, weil Polynome Kompositionen aus stetigen Funktion
sind.

• Wir werten f am Rand also an den Stellen x = 1 und x = 2 aus:

f(1) = 4− 6 + 3− 2 = −1 < 0

f(2) = 32− 24 + 6− 2 > 0

Gemäss dem Zwischenwertsatz muss als f alle Werte zwischen f(1) (negativ) und
f(2) (positiv) im Intervall [1, 2] annehmen. Insbesondere gibt es ein x∗ ∈ (1, 2), mit
f(x∗) = 0. Damit ist x∗ die gesuchte Nullstelle des Polynoms.

Beispiel 3.5. Besitzt die Gleichung sin(2x)− ex = −5 eine Lösung im Intervall [0, π]?

Lösung :
Wir definierten die Funktion f(x) = sin(2x)− ex + 5.

sin(2x)− ex = −5 besitzt eine Lösung in [0, π] ⇔ f(x) = 0

• Stetigkeit : Da der Sinus und die Exponentialfunktion stetig sind, ist f eine stetige
Funktion.

• Wir werten f am Rand also an den Stellen x = 0 und x = π aus:

f(0) = sin(0)− e0 + 5 = 4 ≥ 0

f(π) = sin(2π)− eπ + 5

= −eπ + 5 ≤ 0

Gemäss dem Zwischenwertsatz gitbt es also ein x∗ ∈ [0, π], so dass f(x∗) = 0. Damit
ist x∗ die gesuchte Lösung der Gleichung im Intervall [0, π].
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