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1 Injektiviat , Surjektivitat, Bijektivitat

Definition 1.1

Eine Abbildung f : X — Y heisst injektiv, falls

Ve, € X0 1 #x0 =  f(x1) # fx2).

(In Worten: Verschiedene Elemente aus X werden auf verschiedene Bilder in Y abge-
bildet.)

Definition 1.2
Eine Abbildung f : X — Y heisst surjektiv, falls

VYyeYdreX: f(z)=uy.

(In Worten: Jedes Element aus Y wird von f ”getroffen”.)

Definition 1.3
Eine Abbildung f : X — Y heisst bijektiv, falls

VyeY3ze X: f(z)=uy.

(In Worten: Jedes Element aus Y wird von f genau eins ” getroffen”.)

Beispiel 1.1. Seien f: X — Y und g : Y — Z Abbildungen, so dass go f : X — Z
bijektiv ist. Beweise die folgenden Aussagen, oder widerlege mit einem Gegenbeispiel.

(a) f ist injektiv
(b) f ist surjektiv
(c) g ist injektiv
(d) g ist surjektiv
Losung:

(a) f ist injektiv. Seien x,2" € X verschieden. Nehme an, dass f(z) = f(2’). Dann folgt
auch

(go () =g(f(z)) = g(f(z)) = (g0 ) ().

Da g o f injektiv ist [folgt weil g o f bijektiv ist], folgt = 2/, im Widerspruch zur
Annahme, dass die beiden Elemente verschieden sind. Also gilt f(z) # f(2/).

(b) f ist im Allgemeinen nicht surjektiv. Gegenbeispiel:
Sei X = {z},Y = {z,2'}, mit x # 2/, und Z = X. Setze f(z) = z und g(z) = g(2’) =
x. Dann ist go f die Identitdt auf X und somit bijektiv [wie in der Aufgabenstellung
gegeben|. Die Funktion f ist nun allerdings nicht surjektiv, da 2’ nicht im Bild con f
liegt.



(c) g ist im Allgemeinen nicht injektiv. Als Gegenbeispiel nehme man dasjenige aus
Aufgabenteil (b). Dort ist ¢ nicht injektiv, da 2 und 2’ beide auf = abgebildet werden.

(d) g ist surjektiv. Da go f surjektiv ist [folgt weil g o f bijektiv ist], gilt Z = (go f)(X).
Aber
Z=(go [)(X)=g(f(X))CcgY)CZ

Also g(Y) = Z, und g ist surjektiv.

2 Potenzreihendarstellung (Erinnerung)

Definition 2.1

Die Exponential-, Sinus- und Cosinusfunktion haben die folgende Potenzreihendarstel-
lung:

Beispiel 2.1. Berechne mit Hilfe der Potenzreihendarstellung von Exp den folgenden

. E -1
Grenzwert: lim 2R@=1
z—0 B

Losung:

Wir betrachten nun (i):

n—1

=D 3)

Jetzt miissen wir, ob (3) konvergiert und wenn ja fiir welche . Wir wenden deshalb nun
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das Quotientenkriterium an:
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Nun kénnen wir endlich (1) berechnen, dazu schreiben wir die ersten paar Terme der
Potenzreihendarstellung von Exp aus.
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Satz 1: Leibniz Satz 2.7.12 (Burger Skript)

Sei (an)n<1 monoton fallend mit a,, > 0, Vn > 1 and lim,,_,~ a,, = 0. Dann konvergiert
S = (—1)k+1ak
k=1
und es gilt:
a; — as S & S ai.

3 Stetigkeit

Definition 3.1: 3.2.1 (Burger Skript)

Sei D C R,z € D. Die Funktion f: D — R ist in xo stetig, falls es fiir jedes ¢ > 0
ein 0 > 0 gibt, so dass fiir alle z € D die Implikation

|# — 20| <0 = [f(z) = fxo)| <e



gilt.

Definition 3.2: 3.2.1 (Quantorenversion von oben)

Sei D C R, xzg € D. Die Funktion f: D — R ist in x¢ stetig, falls
Ve>0,30 >0: |z — xo] < = |f(x) — f(zo)| <&, VxeD

gilt.

Definition 3.3: (4.1.2)

Sei f:QCRY—= R 20€Q, ace R

f hat an der Stelle o den Grenzwert a, falls fir jede Folge (xy)ken in £ mit koo, To
gilt f(zx) 2

Notation: lim f(z) = f(x¢) = a.

T—rT0

Bemerkung.
Die Definition von Gernzwert mit Folgen von oben kann alternativ wie folgt geschrieben
werden:

lim f(z) =a < VY(2p)neny € Qmit lim z, =z, gilt lim f(z,) = a.
T—x0 n—00 n—00

Definition 3.4: (4.1.3)
Sei Q C R4, f:Q — R"™
(1) f heisst stetig an der Stelle xy € Q, falls lim f(z) = f(xy) =: a existiert.

T—T0

(ii) f heisst an der Stelle zo € Q\ Q stetig erginzbar, falls lim f(z) =: a existert.

T—>T0

(In diesem Fall ist die duch f(zg) = a ergénzte Funktion f stegig an der Stelle
ZL'().)

Definition 3.5: (4.2.1)

Sei f:Q c R?Y— R™
f heisst stetig auf €2, falls f in jedem Punkt xq € Q) stetig ist.

Bemerkung.
Um eine gegebene Funktion f : 2 C R — R auf Stetigkeit an der Stelle xq zu iiberpriifen,
muss man also folgende drei Punkte nachweisen:

(i) f muss auf Q definiert sein

(ii) ILm f(z) existiert, d.h. lim f(x) # oo und lim+ f(x) = lim f(x)

=0 =] Tz

(iii) lim f(z) = f(zo)

T—T0



Satz 2: (Rechenregeln fiir stetige Funktionen)
Seien f: Q) — R und g : 2 — R stetig. Dann sind
i) f+yg
(ii) f—g
(iii) fg
(iv) 5 falls g # 0

stetig.
Ausserdem sind f: Q — R und g: f(2) — R stetig, so ist esauch go f : Q@ - R

Beweis von (i): Diese Aussage folgt direkt aus der Summenregel fiir Limites. Sei a € Q.
Da f und g an der Stelle a stetig sind, gilt
lim f(z) = f(a) und limg(z) = g(a).

Tr—a Tr—a

Mit der Regel ”Limes der Summe gleich Summe der Limites” folgt

lim (f(2) + g()) = lim f(z) + lim g(z) = f(a) + g(a) = (f + g)(a).
Somit ist f + g an der Stelle a stetig. O
(Bemerkung. Fiir die anderen Regeln ist der Beweis analog.)

Bemerkung.

Die Exponentialfunktion, der Sinus, der Cosinus, der Tangents (zwischen den Nullstellen
vom Cosinus), die hyperbolischen Funktionen und der Logarithmus sind alles stetige Funk-
tionen.

Bemerkung. (Wichtig)

Die Komposition stetiger Abbildungen ist auch stetig. Ausgeschlossen sind natiirlich
Problemstellen, z.B. der Nenner verschwindet oder es gibt Anderungen in der Definition
von der Funktion.

Beispiel 3.1. Ist die folgende Funktion stetig?

f(m):{x2—2, fir v < —2

fir > -2

Losung:
Die Funktion f(x) ist links von —2 eine Komposition aus stetigen Funktionen und ist
somit auch stetig. Die Funktion f(x) ist rechts von —2 eine Komposition aus rechtsseitig
stetigen Funktionen und ist somit, ausgenommen im Punkt x = 3, rechtsseitig stetig.
(i) lim 22-2=2
z—(—2)"
(ii) f(-2)=—3

UL #—+ = f(x) ist nicht stetig an der Stelle —2.



Beispiel 3.2. Ist die folgende Funktion stetig?

o) = {xz, fir x <1

2% — 4z + 4, fir x>1

Losung:

Die Funktion f(z) ist links von 1 eine Komposition aus linksseitig stetigen Funktionen
und ist somit auch linksseitig stetig. Die Funktion f(x) ist rechts von 1 eine Komposition
aus stetigen Funktionen und ist somit auch stetig.

(i) f(1) =1
(i) lim 22 —4z+4=1

z—1+
()& (i) (1) = (i) = f(x) ist stetig an der Stelle 1.

Beispiel 3.3. Gegeben sei eine Funktion

8a + 16x fir z < 2
flz) =2, .
a*(z+2) fir x> 2

Bestimme a € R, so dass f(x) in z = 2 stetig ist.

Lésung: Die Funktionen x — 8a + 16z und x — a*(x + 2) sind stetig. Deshalb ist die
Funktion f stetig ausserhalb des Punktes 2 und sie ist rechtsseitig stetig im Punkt 2.
Damit sie an der Stelle 2 noch stetig ist, muss zusétzlich folgendes gelten:

lim f(x) = /(2)

< lim 8a+ 16z =da%-4

T2~
& 8a+32=ad’-4
& 4a®—8a—-32=0
8+ /64 —4-4-(-32)
2-4

< Q12 =

 8++/576
- =

8+24 4
8 ] =2

Daraus folgt, dass f fiir a = —2 und a = 4 an der Stelle x = 2 stetig ist.

Satz 3: Zwischenwertsatz

Sei f : [a,b] = R stetig mit f(a) < f(b). Dann gibt es zu jedem y € [f(a), f(b)] ein
x € [a,b] mit f(z) =y.

Beispiel 3.4. Zeige: Das Polynom f(z) = 4x3 — 62* + 3z — 2 besitzt eine Nullstelle,
welche zwischen 1 und 2 liegt.

Losung:



o Stetigkeit: fist auf [1, 2] stetig, weil Polynome Kompositionen aus stetigen Funktion
sind.

e Wir werten f am Rand also an den Stellen x = 1 und x = 2 aus:

f)=4—6+3-2=—-1<0
f(2)=32-2446-2>0

Geméss dem Zwischenwertsatz muss als f alle Werte zwischen f(1) (negativ) und
f(2) (positiv) im Intervall [1, 2] annehmen. Insbesondere gibt es ein z* € (1,2), mit
f(z*) = 0. Damit ist z* die gesuchte Nullstelle des Polynoms.

Beispiel 3.5. Besitzt die Gleichung sin(2z) — e* = —5 eine Losung im Intervall [0, 7]?
Losung:
Wir definierten die Funktion f(x) = sin(2x) — e* + 5.
sin(2x) — e” = —5 besitzt eine Losung in [0,7] < f(z) =0
o Stetigkeit: Da der Sinus und die Exponentialfunktion stetig sind, ist f eine stetige
Funktion.
e Wir werten f am Rand also an den Stellen x = 0 und = = 7 aus:
f(0) =sin(0) —e’+5=4>0
f(m) =sin(2m) —e™ +5
=—€"+5<0

Gemiss dem Zwischenwertsatz gitbt es also ein z* € [0, 7], so dass f(z*) = 0. Damit
ist z* die gesuchte Losung der Gleichung im Intervall [0, 7].



