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1 Stetigkeit (II)

Definition 1.1: (Struwe 4.2.2)

K C R"™ heisst kompakt, falls jede Folge (x,)neny € K einen Haufungspunkt in K
besitzt, d.h. falls eine Teilfolge A C IN und ein 2y € K existieren mit

n—o00, n€EA
Ty — Xp-

Bemerkung.
Eine Menge K C R™ heisst kompakt, falls sie beschrankt und abgeschlossen ist.

Beispiel 1.1 (Struwe 4.2.2).
(i) Das ”abgeschlossene” Intervall [0, 1] ist kompakt.
(ii) Das "offene” Intervall (0,1) ist nicht kompakt.

Die Beweise sind im Struwe Skript.

1.1 Stetigkeit

Definition 1.2: (Struwe 4.1.3)
Sei Q C RY, f:Q — R™
(i) f heisst stetig an der Stelle xq € 2, falls lim f(x) = f(zo) =: a existiert.

T—xQ
(ii) f heisst an der Stelle xo € Q\ Q stetig erginzbar, falls lim f(z) =: a existert.
Tr—xTQ

(In diesem Fall ist die duch f(zg) = a ergénzte Funktion f stegig an der Stelle
33'0.)

Definition 1.3: (Struwe 4.2.1)

Sei f:QCRY— R™
f heisst stetig auf €2, falls f in jedem Punkt xy € 2 stetig ist.

Definition 1.4: (Burger 3.2.1)

Sei D C R,zy € D. Die Funktion f: D — R ist in xo stetig, falls es fiir jedes € > 0
ein 6 > 0 gibt, so dass fiir alle z € D die Implikation

|2 — x| <6 = |f(x) = flzo)| <&

gilt.

Definition 1.5: (Burger 3.2.1 (Quantorenversion von oben))

Sei D C R,zg € D. Die Funktion f: D — R ist in xo stetig, falls

Ve > 0,36 >0: |z —xo] <0 = |f(x) — f(zo)| <&, VxeD



gilt.

1.2 Gleichmassige Stetigkeit
Definition 1.6: (Struwe 4.7.2)

f € — R" heisst gleichmdssig stetig, falls gilt

Ve >0, 35(e) =0 >0, Vo,y € Q: lz —yl <d=|f(z)— fly)] <e

Satz 1: (Struwe 4.7.3)

Sei 0 C R beschrinkt, f : Q — R” stetig und auf Q stetig ergéinzbar. Dann ist f
gleichmassig stetig.

Satz 2

Sei f: Q) — R stetig und €2 kompakt. Dann ist f gleichmassig stetig.

Bemerkung.
Diesen Satz kann man sich mit der folgenden Merkregel merken:

Stetigkeit auf einer kompakten Menge =  gleichmaéssige Stetigkeit.

Beispiel 1.2. Ist die Funktion f(z) = 5 gleichmissig stetig?

Losung:
Wir fixieren ein € > 0. Wir suche § > 0, sodass fiir alle z,y € Q mit |z — y| < § folgendes
gilt:

|f(@) = fy)| <e.

Fir z,y € [0, 00) gilt:

A ': xQ(y+1)—y2(x+1)‘
r+1 y+1 (@+ 1y +1)

22y + 2% — y?r —y?
(z+1)(y+1)
zy(r —y) +2° =y
(x+1)(y+1)
(z—y)+ (v —y)

(x4+1)(y+1

B Ty +x+y

-kl (5 5)
+

e Ty T Y
= o=yl ((x+1)(y+1) GrO+1) ($+1)(y+1))

Ty

x—i—y)‘




Weil #1 < 1 und y—i’_l < 1, gilt (IH";% < 1. Deshalb konnen wir die folgende Ab-

schatzung machen:

x? y? xy x y
— = |z —y| + +
r+1 y+1 @+Dy+1) (@+Dy+1) (@+y+1)
<1 <1 <1

<1
<lzr—y|ll+1+4+1)
= 3|z — y|

Somit folgt:
x? y? ! €
— <3Blzr—yl<e = |lx—y|l<==:0
s+l y+il— ==yl eyl <3

Da ¢ von z,y unabhéangig ist, folgt damit, dass f gleichmaéssig stetig ist.

1.3 Lipschitz-Stetigkeit
Definition 1.7: (Struwe 4.1.4)

Eine Funktion f : Q € RY — R" heisst Lipschitz stetig mit Lipschitzkonstante L, falls
gilt
If (@) = fWll < Lllz—yll, Vz,ye.

Satz 3

Eine differenzierbare Funktion f : 2 — R ist genau dann Lipschitz-stetig, wenn ihre
erste Ableitung auf {2 beschrankt ist.

Bemerkung.
Die verschiedenen Stetigkeiten hangen wie folgt von einander ab, wobei die Pfeile Imp-
likationen darstell

Ableitung beschrankt

2 kompakt

Beispiel 1.3. Ist die folgende Funktion Lipschit-stetig? Falls ja, bestimme die Lipschitz-
Konstante.

f:(-3,2) =R
v f(z) = 2%+ 4o — 1.



Losung:
Seien x,y € (—3,2) beliebig. Es gilt

[f(@) = f)l = |2* + 4o — 1 = (" + 4y — 1))
= |2? +4r —1—y* — 4y + 1|
= |2? + 4z — y* — 4y
= |2* —y* +4(z — y)|
=z =y)(z+y) + 4z —y)|
= le+y+4llr -y

Fiir alle z,y € (—3,2) gilt nach der Dreiecksungleichung |z +y + 4| < || + |y| +4 <
3+ 3+4=10. Es ergitbt sich somit:

[f(z) = fW)] =z +y +4|lx —y[ < 10|z —yl.

Die Funktion ist demzufolge Lipschitz-stetig mit Lipschitz-Konstante L = 10.

2 Punktweise und Gleichmassige Konvergenz

Definition 2.1: (Struwe 4.8.1)
Sei Q C R und seien f, fi,: Q2 — R", n € IN.

(i) Die Folge (fx)rew konvergiert punktweise gegen f, falls gilt

fulz) 2225 f(z), Vae

glm., k—oo

(ii) Die Folge (fx)rew konvergiert gleichmdssig gegen f, f f, falls

sup | fu(z) — f(2)] 2225 0.

e

Satz 4: (Burger 3.7.4)

Sei @ € R und f, : Q@ — R eine Funktionenfolge bestehend aus (in ) stetigen
Funktionen die (in §2) gleichméssig gegen eine Funktion f : Q@ — R konvergiert.
Dann ist f (in Q) stetig.

Satz 5: (Struwe 4.8.1 (erste Variante))

glm. k—oo

Seien f; : Q C RY — R™ stetig, k € IN. Weiter gelte f;
R™. Dann ist f stetig.

f firein f:Q —




Satz 6: (zweite Variante)

Sei f, : 2 C R — R eine Folge stetiger Funktionen. Falls f,, gegen f gleichmassig
konvergiert, ist f stetig.

Bemerkung.
Meist wird die Negation vom obigen Satz benutzt:
Ist der punktweise Limes f von f,, unstetig, so konvergiert f,, nicht gleichmassig gegen

f.
Satz 7: (Dini)

Sei f,, : Q@ C R¥ — R™ eine Folge stetiger Funktionen mit punktweisem Limes f und
sei 2 kompakt. Ist f stetig und f, monoton wachsend, so konvergiert f, gegen f
gleichmassig.

Bemerkung.

Unter einer monoton wachsenden Folge stetiger Funktionen versteht man einen Folge
fn(x), fur welche f,(z) < foi1(x) fir alle z € Q gilt.

In anderen Worten: Fiir ein beliebiges aber fixes z € Q gilt f,(x) < foi1(2).

fh

Let’ ok

Kochrezept fiir gleichmassige Konvergenz
Gegeben: Folge stetiger Funktionen f, : Q@ C R - R
Gefragt: Konvergiert f, auf () gleichmassig?

(i) Berechne den punktweisen Limes von f,, auf € (Struwe Def. 4.8.1 (i)), d.h.

f(x) = lim f,(z) fiir ein fixes aber beliebiges = € Q.

n—o0

(ii) Priife f, auf gleichméssige Konvergenz.
Direkte Methode :

(A) Berechne
sup [ fu () = f(x)]

z€Q

Zu diesem Zweck ist es oft niitzlich, die Ableitung nach « von | f,,(x) — f(x)|
zu berechnen und diese gleich Null zu setzen. Ausser, man sieht den max
direkt, aber das geht nur bei ”einfachen” Aufgaben.

(B) Berechne den Limes fiir n — oo

lim sup [f,(z) — f(x)].

n—o0 e
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Gilt lim sup |f,(z) — f(x)| = 0, so ist f,, auf Q gleichméssig konvergent.

n—o0 e
Indirekte Methoden :
e f unstetig = keine gleichmassige Konvergenz.

o f stetig, fn(x) < fuyi(z) Vo € Q und Q kompakt = gleichméssige Kon-
vergenz.

Beispiel 2.1. Betrachte die Folge stetiger Funktionen definiert durch

fo R R, fule) =\l +

Konvergiert f, gleichméssig auf R?

Losung:
(i) Punktweise Konvergenz: Wir fixieren x € R und bilden den Limes fiir n — oo:

timfuf) = tim /el + 5 = v/l = f(@)

n—oo

Die Funktionenfolge konvergiert somit punktweise gegen den punktweisen Grenzwert
fx) = /lxl.

(ii) Gleichmdssige Konvergenz: Wir miissen zeigen, dass lim sup |f,(z) — f(x)] = 0
n—oo zeR

gilt. Wir berechnen zuerst den Ausdruck sup | f,(z) — f(z)|:
z€R

suplfu(a) = f(a) = sup |y la] + = — Vel

. ( rm%—m) CEEERRT)

= sup
= (/lel + 5 + v/1aT)
1
n3
= sup

R |z + 55 + V2]

A
3

V0l L5 +4/1o]

Da |z| positiv ist, wird das Supremum von bei x = 0 angenommen.




Es gilt somit:

sup | fu(x) — f(z)| = sup
zeR zeR /’x‘_i_n%_i_ ’iC‘

Wir bilden nun den Limes fir n — oo und finden:

1
lim supz € R|f,(z) — f(z)| = lim — = 0.
n—o0

n—00 N2

Somit konvergiert die Funktionenfolge f,, auf R glecihmassig gegen f.

3 Trigonometrische Funktionen

Definition 3.1

sin(x)

tan(x) = cos(@)’

Bemerkung. (trigonometrische Identitéten)
(i) sin(3 — z) = cos(z)
(ii) sin(m — ) = sin(z)
(iii) sin(2z) = 2sin(x)cos(x)
(iv) ¥,y € (<. 3),0 y € (<5, 3)
e sin(x £ y) = sin(z) cos(y) £ cos(z) sin(y)
e cos(z £ y) = cos(x) cos(y) F sin(z) sin(y)

Bemerkung: (sollte auf eure Zusammenfassung fiir die Priifung)
Im folgenden sieht ihr "schone” Cosinus- und Sinuswerte auf dem Einheitskreis, wobei die
z-Richtung cos(z) und die y-Richtung sin(x) entspricht:






