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1 Stetigkeit (II)

Definition 1.1: (Struwe 4.2.2)

K ⊂ Rn heisst kompakt, falls jede Folge (xn)n∈N ⊂ K einen Häufungspunkt in K
besitzt, d.h. falls eine Teilfolge Λ ⊂ N und ein x0 ∈ K existieren mit

xn
n→∞, n∈Λ−−−−−−→ x0.

Bemerkung.
Eine Menge K ⊂ Rn heisst kompakt, falls sie beschränkt und abgeschlossen ist.

Beispiel 1.1 (Struwe 4.2.2).

(i) Das ”abgeschlossene” Intervall [0, 1] ist kompakt.

(ii) Das ”offene” Intervall (0, 1) ist nicht kompakt.

Die Beweise sind im Struwe Skript.

1.1 Stetigkeit

Definition 1.2: (Struwe 4.1.3)

Sei Ω ⊂ Rd, f : Ω→ Rn.

(i) f heisst stetig an der Stelle x0 ∈ Ω, falls lim
x→x0

f(x) = f(x0) =: a existiert.

(ii) f heisst an der Stelle x0 ∈ Ω \ Ω stetig ergänzbar, falls lim
x→x0

f(x) =: a existert.

(In diesem Fall ist die duch f(x0) = a ergänzte Funktion f stegig an der Stelle
x0.)

Definition 1.3: (Struwe 4.2.1)

Sei f : Ω ⊂ Rd → Rn.
f heisst stetig auf Ω, falls f in jedem Punkt x0 ∈ Ω stetig ist.

Definition 1.4: (Burger 3.2.1)

Sei D ⊂ R, x0 ∈ D. Die Funktion f : D → R ist in x0 stetig, falls es für jedes ε > 0
ein δ > 0 gibt, so dass für alle x ∈ D die Implikation

|x− x0| < δ =⇒ |f(x)− f(x0)| < ε

gilt.

Definition 1.5: (Burger 3.2.1 (Quantorenversion von oben))

Sei D ⊂ R, x0 ∈ D. Die Funktion f : D → R ist in x0 stetig, falls

∀ε > 0,∃δ > 0 : |x− x0| < δ =⇒ |f(x)− f(x0)| < ε, ∀x ∈ D
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gilt.

1.2 Gleichmässige Stetigkeit

Definition 1.6: (Struwe 4.7.2)

f : Ω→ Rn heisst gleichmässig stetig, falls gilt

∀ε > 0, ∃δ(ε) = δ > 0, ∀x, y ∈ Ω : |x− y| < δ ⇒ |f(x)− f(y)| < ε

Satz 1: (Struwe 4.7.3)

Sei Ω ⊂ Rd beschränkt, f : Ω → Rn stetig und auf Ω stetig ergänzbar. Dann ist f
gleichmässig stetig.

Satz 2

Sei f : Ω→ R stetig und Ω kompakt. Dann ist f gleichmässig stetig.

Bemerkung.
Diesen Satz kann man sich mit der folgenden Merkregel merken:

Stetigkeit auf einer kompakten Menge ⇒ gleichmässige Stetigkeit.

Beispiel 1.2. Ist die Funktion f(x) = x2

x+1
gleichmässig stetig?

Lösung :
Wir fixieren ein ε > 0. Wir suche δ > 0, sodass für alle x, y ∈ Ω mit |x− y| < δ folgendes
gilt:

|f(x)− f(y)| < ε.

Für x, y ∈ [0,∞) gilt:∣∣∣∣ x2

x+ 1
− y2

y + 1

∣∣∣∣ =

∣∣∣∣x2(y + 1)− y2(x+ 1)

(x+ 1)(y + 1)

∣∣∣∣
=

∣∣∣∣x2y + x2 − y2x− y2

(x+ 1)(y + 1)

∣∣∣∣
=

∣∣∣∣xy(x− y) + x2 − y2

(x+ 1)(y + 1)

∣∣∣∣
=

∣∣∣∣xy(x− y) + (x− y)(x+ y)

(x+ 1)(y + 1)

∣∣∣∣
= |x− y|

(
xy + x+ y

(x+ 1)(y + 1)

)
= |x− y|

(
xy

(x+ 1)(y + 1)
+

x

(x+ 1)(y + 1)
+

y

(x+ 1)(y + 1)

)
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Weil 1
x+1
≤ 1 und y

y+1
≤ 1, gilt xy

(x+1)(y+1)
≤ 1. Deshalb können wir die folgende Ab-

schätzung machen:

∣∣∣∣ x2

x+ 1
− y2

y + 1

∣∣∣∣ = |x− y|

 xy

(x+ 1)(y + 1)︸ ︷︷ ︸
≤1

+
x

(x+ 1)(y + 1)︸ ︷︷ ︸
≤1

+
y

(x+ 1)(y + 1)︸ ︷︷ ︸
≤1


≤ |x− y|(1 + 1 + 1)

= 3|x− y|

Somit folgt: ∣∣∣∣ x2

x+ 1
− y2

y + 1

∣∣∣∣ ≤ 3|x− y|
!
< ε ⇒ |x− y| < ε

3
=: δ.

Da δ von x, y unabhängig ist, folgt damit, dass f gleichmässig stetig ist.

1.3 Lipschitz-Stetigkeit

Definition 1.7: (Struwe 4.1.4)

Eine Funktion f : Ω ⊂ Rd → Rn heisst Lipschitz stetig mit Lipschitzkonstante L, falls
gilt

‖f(x)− f(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ Ω.

Satz 3

Eine differenzierbare Funktion f : Ω → R ist genau dann Lipschitz-stetig, wenn ihre
erste Ableitung auf Ω beschränkt ist.

Bemerkung.
Die verschiedenen Stetigkeiten hängen wie folgt von einander ab, wobei die Pfeile Imp-
likationen darstellen:

Beispiel 1.3. Ist die folgende Funktion Lipschit-stetig? Falls ja, bestimme die Lipschitz-
Konstante.

f : (−3, 2)→ R

x 7→ f(x) = x2 + 4x− 1.
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Lösung :
Seien x, y ∈ (−3, 2) beliebig. Es gilt

|f(x)− f(y)| = |x2 + 4x− 1− (y2 + 4y − 1)|
= |x2 + 4x− 1− y2 − 4y + 1|
= |x2 + 4x− y2 − 4y|
= |x2 − y2 + 4(x− y)|
= |(x− y)(x+ y) + 4(x− y)|
= |x+ y + 4||x− y|

Für alle x, y ∈ (−3, 2) gilt nach der Dreiecksungleichung |x + y + 4| ≤ |x| + |y| + 4 ≤
3 + 3 + 4 = 10. Es ergitbt sich somit:

|f(x)− f(y)| = |x+ y + 4||x− y| ≤ 10|x− y|.

Die Funktion ist demzufolge Lipschitz-stetig mit Lipschitz-Konstante L = 10.

2 Punktweise und Gleichmässige Konvergenz

Definition 2.1: (Struwe 4.8.1)

Sei Ω ⊂ Rd und seien f, fk : Ω→ Rn, n ∈ N.

(i) Die Folge (fk)k∈N konvergiert punktweise gegen f , falls gilt

fk(x)
k→∞−−−→ f(x), ∀x ∈ Ω.

(ii) Die Folge (fk)k∈N konvergiert gleichmässig gegen f, fk
glm., k→∞−−−−−−−→ f , falls

sup
x∈Ω
|fk(x)− f(x)| k→∞−−−→ 0.

Satz 4: (Burger 3.7.4)

Sei Ω ⊂ R und fn : Ω → R eine Funktionenfolge bestehend aus (in Ω) stetigen
Funktionen die (in Ω) gleichmässig gegen eine Funktion f : Ω→ R konvergiert.
Dann ist f (in Ω) stetig.

Satz 5: (Struwe 4.8.1 (erste Variante))

Seien fk : Ω ⊂ Rd → Rn stetig, k ∈ N. Weiter gelte fk
glm. k→∞−−−−−−→ f für ein f : Ω →

Rn. Dann ist f stetig.
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Satz 6: (zweite Variante)

Sei fn : Ω ⊂ R → R eine Folge stetiger Funktionen. Falls fn gegen f gleichmässig
konvergiert, ist f stetig.

Bemerkung.
Meist wird die Negation vom obigen Satz benutzt:
Ist der punktweise Limes f von fn unstetig, so konvergiert fn nicht gleichmässig gegen
f .

Satz 7: (Dini)

Sei fn : Ω ⊂ Rk → Rm eine Folge stetiger Funktionen mit punktweisem Limes f und
sei Ω kompakt. Ist f stetig und fn monoton wachsend, so konvergiert fn gegen f
gleichmässig.

Bemerkung.
Unter einer monoton wachsenden Folge stetiger Funktionen versteht man einen Folge
fn(x), für welche fn(x) ≤ fn+1(x) für alle x ∈ Ω gilt.
In anderen Worten: Für ein beliebiges aber fixes x ∈ Ω gilt fn(x) ≤ fn+1(x).

Kochrezept für gleichmässige Konvergenz
Gegeben: Folge stetiger Funktionen fn : Ω ⊂ R→ R

Gefragt: Konvergiert fn auf Ω gleichmässig?

(i) Berechne den punktweisen Limes von fn auf Ω (Struwe Def. 4.8.1 (i)), d.h.

f(x) = lim
n→∞

fn(x) für ein fixes aber beliebiges x ∈ Ω.

(ii) Prüfe fn auf gleichmässige Konvergenz.

Direkte Methode :

(A) Berechne
sup
x∈Ω
|fn(x)− f(x)|.

Zu diesem Zweck ist es oft nützlich, die Ableitung nach x von |fn(x)−f(x)|
zu berechnen und diese gleich Null zu setzen. Ausser, man sieht den max
direkt, aber das geht nur bei ”einfachen” Aufgaben.

(B) Berechne den Limes für n→∞

lim
n→∞

sup
x∈Ω
|fn(x)− f(x)|.
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Gilt lim
n→∞

sup
x∈Ω
|fn(x)− f(x)| = 0, so ist fn auf Ω gleichmässig konvergent.

Indirekte Methoden :

• f unstetig ⇒ keine gleichmässige Konvergenz.

• f stetig, fn(x) ≤ fn+1(x) ∀x ∈ Ω und Ω kompakt ⇒ gleichmässige Kon-
vergenz.

Beispiel 2.1. Betrachte die Folge stetiger Funktionen definiert durch

fn : R→ R, fn(x) =

√
|x|+ 1

n3
.

Konvergiert fn gleichmässig auf R?

Lösung :

(i) Punktweise Konvergenz : Wir fixieren x ∈ R und bilden den Limes für n→∞:

lim
n→∞

fn(x) = lim
n→∞

√
|x|+ 1

n3
=
√
|x| =: f(x)

Die Funktionenfolge konvergiert somit punktweise gegen den punktweisen Grenzwert
f(x) =

√
|x|.

(ii) Gleichmässige Konvergenz : Wir müssen zeigen, dass lim
n→∞

sup
x∈R
|fn(x) − f(x)| = 0

gilt. Wir berechnen zuerst den Ausdruck sup
x∈R
|fn(x)− f(x)|:

sup
x∈R
|fn(x)− f(x)| = sup

x∈R

∣∣∣∣∣
√
|x|+ 1

n3
−
√
|x|

∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣∣∣
(√
|x|+ 1

n3
−
√
|x|

) (√|x|+ 1
n3 +

√
|x|
)

(√
|x|+ 1

n3 +
√
|x|
)
∣∣∣∣∣∣∣

= sup
x∈R

∣∣∣∣∣∣
1
n3√

|x|+ 1
n3 +

√
|x|

∣∣∣∣∣∣ .
Da |x| positiv ist, wird das Supremum von

∣∣∣∣ 1
n3√

|x|+ 1
n3 +
√
|x|

∣∣∣∣ bei x = 0 angenommen.
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Es gilt somit:

sup
x∈R
|fn(x)− f(x)| = sup

x∈R

∣∣∣∣∣∣
1
n3√

|x|+ 1
n3 +

√
|x|

∣∣∣∣∣∣
=

1
n3√

1
n3

=
1
n3

1

n
3
2

=
1

n3

n
3
2

1

=
1

n3− 3
2

=
1

n
3
2

Wir bilden nun den Limes für n→∞ und finden:

lim
n→∞

supx ∈ R|fn(x)− f(x)| = lim
n→∞

1

n
3
2

= 0.

Somit konvergiert die Funktionenfolge fn auf R glecihmässig gegen f .

3 Trigonometrische Funktionen

Definition 3.1

tan(x) =
sin(x)

cos(x)
.

Bemerkung. (trigonometrische Identitäten)

(i) sin
(
π
2
− x
)

= cos(x)

(ii) sin(π − x) = sin(x)

(iii) sin(2x) = 2sin(x)cos(x)

(iv) ∀x, y ∈ (−π
4
, π

4
), x± y ∈ (−π

2
, π

2
):

• sin(x± y) = sin(x) cos(y)± cos(x) sin(y)

• cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y)

Bemerkung: (sollte auf eure Zusammenfassung für die Prüfung)
Im folgenden sieht ihr ”schöne” Cosinus- und Sinuswerte auf dem Einheitskreis, wobei die
x-Richtung cos(x) und die y-Richtung sin(x) entspricht:
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