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1 Stetigkeit (Erinnerung)

Definition 1.1: (Struwe 4.2.2)

K ⊂ Rn heisst kompakt, falls jede Folge (xn)n∈N ⊂ K einen Häufungspunkt in K
besitzt, d.h. falls eine Teilfolge Λ ⊂ N und ein x0 ∈ K existieren mit

xn
n→∞, n∈Λ−−−−−−→ x0.

Bemerkung.
Eine Menge K ⊂ Rn heisst kompakt, falls sie beschränkt und abgeschlossen ist.

Beispiel 1.1 (Struwe 4.2.2).

(i) Das ”abgeschlossene” Intervall [0, 1] ist kompakt.

(ii) Das ”offene” Intervall (0, 1) ist nicht kompakt.

Die Beweise sind im Struwe Skript.

1.1 Stetigkeit

Definition 1.2: (Struwe 4.1.3)

Sei Ω ⊂ Rd, f : Ω→ Rn.

(i) f heisst stetig an der Stelle x0 ∈ Ω, falls lim
x→x0

f(x) = f(x0) =: a existiert.

(ii) f heisst an der Stelle x0 ∈ Ω \ Ω stetig ergänzbar, falls lim
x→x0

f(x) =: a existert.

(In diesem Fall ist die duch f(x0) = a ergänzte Funktion f stegig an der Stelle
x0.)

Definition 1.3: (Struwe 4.2.1)

Sei f : Ω ⊂ Rd → Rn.
f heisst stetig auf Ω, falls f in jedem Punkt x0 ∈ Ω stetig ist.

Definition 1.4: (Burger 3.2.1)

Sei D ⊂ R, x0 ∈ D. Die Funktion f : D → R ist in x0 stetig, falls es für jedes ε > 0
ein δ > 0 gibt, so dass für alle x ∈ D die Implikation

|x− x0| < δ =⇒ |f(x)− f(x0)| < ε

gilt.

Definition 1.5: (Burger 3.2.1 (Quantorenversion von oben))

Sei D ⊂ R, x0 ∈ D. Die Funktion f : D → R ist in x0 stetig, falls

∀ε > 0,∃δ > 0 : |x− x0| < δ =⇒ |f(x)− f(x0)| < ε, ∀x ∈ D
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gilt.

1.2 Gleichmässige Stetigkeit

Definition 1.6: (Struwe 4.7.2)

f : Ω→ Rn heisst gleichmässig stetig, falls gilt

∀ε > 0, ∃δ(ε) = δ > 0, ∀x, y ∈ Ω : |x− y| < δ ⇒ |f(x)− f(y)| < ε

Satz 1: (Struwe 4.7.3)

Sei Ω ⊂ Rd beschränkt, f : Ω → Rn stetig und auf Ω stetig ergänzbar. Dann ist f
gleichmässig stetig.

Satz 2

Sei f : Ω→ R stetig und Ω kompakt. Dann ist f gleichmässig stetig.

Bemerkung.
Diesen Satz kann man sich mit der folgenden Merkregel merken:

Stetigkeit auf einer kompakten Menge ⇒ gleichmässige Stetigkeit.

Beispiel 1.2. Ist die Funktion f(x) = x2

x+1
gleichmässig stetig?

Lösung :
Wir fixieren ein ε > 0. Wir suche δ > 0, sodass für alle x, y ∈ Ω mit |x− y| < δ folgendes
gilt:

|f(x)− f(y)| < ε.

Für x, y ∈ [0,∞) gilt:∣∣∣∣ x2

x+ 1
− y2

y + 1

∣∣∣∣ =

∣∣∣∣x2(y + 1)− y2(x+ 1)

(x+ 1)(y + 1)

∣∣∣∣
=

∣∣∣∣x2y + x2 − y2x− y2

(x+ 1)(y + 1)

∣∣∣∣
=

∣∣∣∣xy(x− y) + x2 − y2

(x+ 1)(y + 1)

∣∣∣∣
=

∣∣∣∣xy(x− y) + (x− y)(x+ y)

(x+ 1)(y + 1)

∣∣∣∣
= |x− y|

(
xy + x+ y

(x+ 1)(y + 1)

)
= |x− y|

(
xy

(x+ 1)(y + 1)
+

x

(x+ 1)(y + 1)
+

y

(x+ 1)(y + 1)

)
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Weil 1
x+1
≤ 1 und y

y+1
≤ 1, gilt xy

(x+1)(y+1)
≤ 1. Deshalb können wir die folgende Ab-

schätzung machen:

∣∣∣∣ x2

x+ 1
− y2

y + 1

∣∣∣∣ = |x− y|

 xy

(x+ 1)(y + 1)︸ ︷︷ ︸
≤1

+
x

(x+ 1)(y + 1)︸ ︷︷ ︸
≤1

+
y

(x+ 1)(y + 1)︸ ︷︷ ︸
≤1


≤ |x− y|(1 + 1 + 1)

= 3|x− y|

Somit folgt: ∣∣∣∣ x2

x+ 1
− y2

y + 1

∣∣∣∣ ≤ 3|x− y|
!
< ε ⇒ |x− y| < ε

3
=: δ.

Da δ von x, y unabhängig ist, folgt damit, dass f gleichmässig stetig ist.

1.3 Lipschitz-Stetigkeit

Definition 1.7: (Struwe 4.1.4)

Eine Funktion f : Ω ⊂ Rd → Rn heisst Lipschitz stetig mit Lipschitzkonstante L, falls
gilt

‖f(x)− f(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ Ω.

Satz 3

Eine differenzierbare Funktion f : Ω → R ist genau dann Lipschitz-stetig, wenn ihre
erste Ableitung auf Ω beschränkt ist.

Bemerkung.
Die verschiedenen Stetigkeiten hängen wie folgt von einander ab, wobei die Pfeile Imp-
likationen darstellen:

Beispiel 1.3. Ist die folgende Funktion Lipschit-stetig? Falls ja, bestimme die Lipschitz-
Konstante.

f : (−3, 2)→ R

x 7→ f(x) = x2 + 4x− 1.
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Lösung :
Seien x, y ∈ (−3, 2) beliebig. Es gilt

|f(x)− f(y)| = |x2 + 4x− 1− (y2 + 4y − 1)|
= |x2 + 4x− 1− y2 − 4y + 1|
= |x2 + 4x− y2 − 4y|
= |x2 − y2 + 4(x− y)|
= |(x− y)(x+ y) + 4(x− y)|
= |x+ y + 4||x− y|

Für alle x, y ∈ (−3, 2) gilt nach der Dreiecksungleichung |x + y + 4| ≤ |x| + |y| + 4 ≤
3 + 3 + 4 = 10. Es ergitbt sich somit:

|f(x)− f(y)| = |x+ y + 4||x− y| ≤ 10|x− y|.

Die Funktion ist demzufolge Lipschitz-stetig mit Lipschitz-Konstante L = 10.

2 Differential und Differentiationsregeln

Sei in diesem Kapitel immer Ω ⊂ R offen, f : Ω → R, x0 ∈ Ω, sofern nicht anders
definiert.

Definition 2.1: (Struwe 5.1.1)

(i) f heisst differenzierbar an der Stelle x0, falls der Grenzwert

lim
x→x0, x 6=x0

f(x)− f(x0)

x− x0

=: f ′(x0) =:
df

dx
(x0)

existiert. In diesem Fall heisst f ′(x0) die Ableitung (das Differential) von f an
der Stelle x0.

(ii) Analog heisst f = (f1, ..., fn) : Ω→ Rn an der Stelle x0 differenzierbar, falls jede
der Komponentenfunktionen fi an der Stelle x0 differenzierbar ist undf ′(x0) =
(f ′1(x0), ..., f ′n(x0)).

Definition 2.2: (Struwe 5.1.2)

f : Ω→ Rn heisst auf Ω differenzierbar, falls f an jeder Stelle x0 ∈ Ω differenzierbar
ist.

Satz 4: (Struwe 5.1.1)

Ist f : Ω → R differenzierbar an der Stelle x0 ∈ Ω, so ist f an der Stelle x0 auch
stetig.
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Satz 5: (Struwe 5.1.2)

Seien f, g : Ω → R an der Stelle x0 ∈ Ω differenzierbar. Dann sind die Funktionen
f + g, f · g und, falls g(x0) 6= 0, nach die Funktion f/g an der Stelle x0 differenzierbar
und es gilt

(i) Linearität:
(f + g)′(x0) = f ′(x0) + g′(x0)

(ii) Produkteregel:
(fg)′(x0) = f ′(x0)g(x0) + f(x0)g′(x0)

(iii) Quotientenregel:

(f/g)′(x0) =
f ′(x0)g(x0)− f(x0)g′(x0)

g2(x0)
.

Satz 6: (Kettenregel; Struwe 5.1.3)

Sei f : Ω → R an der Stelle x0 ∈ Ω differenzierbar und sei g : R → R an der Stelle
y0 = f(x0) differenzierbar. Dann ist die Funktion f ◦ g : Ω → R an der Stelle x0

differenzierbar und es gilt

(g ◦ f)′(x0) = g′(f(x0))f ′(x0).

Beispiel 2.1. Berechne die Ableitung von | sin(x)|cos(x).

Lösung :
Wir schreiben den Ausdruck um:

| sin(x)|cos(x) = elog(| sin(x)|cos(x))

= ecos(x) log | sin(x)|

Verwende nun die Ketten- und Produkteregel:

d

dx
| sin(x)|cos(x) =

d

dx
ecos(x) log | sin(x)|

= ecos(x) log | sin(x)| d

dx
(cos(x) log | sin(x)|)

= ecos(x) log | sin(x)|
(
− sin(x) log |sin(x)|+ cos(x) · d

dx
log | sin(x)|

)
Betrachten wir die Ableitung vom Logarithmus ein bisschen genauer:

d

dx
log(f(x)) =

{
d
dx

log(f(x)) = 1
f(x)
· f ′(x) = f ′(x)

f(x)
, f(x) > 0

d
dx

log(−f(x)) = 1
−f(x)

· (−f ′(x)) = f ′(x)
f(x)

, f(x) < 0

⇐⇒ d

dx
log(f(x)) =

f ′(x)

f(x)
.
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Also ist das folgende unsere Lösung:

d

dx
| sin(x)|cos(x) = ecos(x) log | sin(x)|

(
− sin(x) log |sin(x)|+ cos(x) · cos(x)

sin(x)

)
= | sin(x)|cos(x)

(
− sin(x) log |sin(x)|+ cos2(x)

sin(x)

)
.

3 Der Mittelwertsatz und Folgerungen

Satz 7: (Struwe 4.6.2)

Sei f : [a, b] → R stetig und streng monoton wachsend. Setze f(a) = c, f(b) = d.
Dann ist f : [a, b]→ [c, d] bijektiv und f−1 ist stetig.

Satz 8: (Struwe 4.6.3)

Sei f : (a, b)→ R stetig und streng monoton wachsend mit monotonen Limites

−∞ ≤ c = inf
a<x<b

f(x) < sup
a<x<b

f(x) = d ≤ ∞.

Dann ist f : (a, b)→ (c, d) bijektiv und f−1 ist stetig.

Satz 9: (Mittelwersatz ; Struwe 5.2.1)

Seien −∞ < a < b < ∞. Sei f : [a, b] → R stetig und differenzierbar in (a, b). Dann
existiert x0 ∈ (a, b) mit

f(b) = f(a) + f ′(x0)(b− a) ⇔ f ′(x0) =
f(b)− f(a)

b− a
.

f ′(x0) ist die Steigung der Sekante durch die Punkte (a, f(a)), (b, f(b)) ∈ G(f).

Beispiel 3.1. Zeige 1
nα+1 <

1
α

(
1

(n−1)α
− 1

nα

)
für n ∈ N und α > 0.

(Hinweis: Betrachte die Funktion 1
xα

auf dem Interval (n− 1, n))

Lösung :
Wir betrachten die Funktion f(x) = 1

xα
auf dem Interval [n − 1, n]. Die Funktion ist

auch (n− 1, n) stetig und auf (n− 1, n) differenzierbar. Die Ableitung ist f ′(x) = − α
xα+1 .
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Gemäss dem Mittelwertsatz gibt es ein c ∈ (n− 1, n) mit

f ′(c) = − α

cα+1

!
=
f(n)− f(n− 1)

n− (n− 1)

=

1
nα
− 1

(n−1)α

n− n+ 1

=

1
nα
− 1

(n−1)α

1

=
1

nα
− 1

(n− 1)α

⇔ α

cα+1
=

1

(n− 1)α
− 1

nα

⇔ 1

cα+1
=

1

α

(
1

(n− 1)α
− 1

nα

)
Der Punkt c liegt im Intervall [n− 1, n], so dass c < n, d.h. 1

n
< 1

c
. Also gilt 1

nα+1 <
1

cα+1 .
Damit folgt

1

nα+1
<

1

cα+1
=

1

α

(
1

(n− 1)α
− 1

nα

)
⇔ 1

nα+1
<

1

α

(
1

(n− 1)α
− 1

nα

)
�

Korollar 3.1: (Struwe 5.2.1)

Seien −∞ < a < b <∞. Sei f : [a, b]→ R stetig und differenzierbar in (a, b) (wie in
Satz 5.2.1).

(i) Falls f ′ ≡ 0 auch (a, b), so ist f konstant.

(ii) Falls f ′ ≥ 0 (bzw. > 0) auf (a, b), so ist f (streng) monoton wachsend.

Satz 10: (Umkehrsatz ; Struwe 5.2.2)

Sei f : (a, b)→ R differenzierbar mit f ′ > 0 auf (a, b) und seien

−∞ ≤ c = inf
a<x<b

f(x) < sup
a<x<b

f(x) = d ≤ ∞.

Dann ist f : (a, b) → (c, d) bijektiv und die Umkehrfunktion f−1 : (c, d) → R ist
differenzierbar mit

(f−1)′(f(x)) = (f ′(x))−1, ∀x ∈ (a, b),

bzw.

(f−1)′(y) =
1

f ′(f−1(y))
, ∀y ∈ (c, d).

Beweis :
Gemäss Korollar 3.1 (ii) ist f streng monoton wachsend und zudem stetig nach Satz 4.
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Gemäss Satz 8 ist f : (a, b)→ (c, d) bijektiv und f−1 ist stetig.

Behauptung : f−1 ist differenzierbar, (f−1)′(f(x0)) = 1
f ′(x0)

, ∀x0.
Beweis :
Fixiere y0 = f(x0). Sei (yk)k∈N ⊂ (c, d) mit

yk = f(xk)
k→∞−−−→, yk 6= y0, (k ∈ N).

Es folgt xk 6= x0 für alle k. Da f−1 stetig ist, gilt zudem

xk = f−1(yk)
k→∞−−−→ x0 = f−1(y0),

also folgt

(f−1)′(f(x0))
Mittelwertsatz

=
f−1(yk)− f−1(y0)

yk − y0

=
xk − x0

f(xk)− f(x0)

=
1

f(xk)−f(x0)
xk−x0

k→∞−−−→ 1

f ′(x0)

wie gewünscht. �

Beispiel 3.2. Berechne die Ableitung von arcsin(x) für x ∈ (−1, 1) mit Hilfe vom
Umkehrsatz.
Bemerkung : arcsin(x) := sin−1(x), sin2(x) := (sin(x))2

Lösung :
Zuerst schreiben wir mal auf was wir über arcsin(x) und der Umkehrfunktion sin(x)
wissen:

arcsin(x) = y ⇔ x = sin(y) ∧ sin′(x) = cos(x)

Nun berechnen wir die Ableitung von arcsin(x):

arcsin′(x)
Umkehrsatz

=
1

sin′(arcsin(x))

=
1

cos(arcsin(x))

cos2(x)+sin2(x)=1
=

1√
1− sin2(arcsin(x))

=
1√

1− x2

Somit ist arcsin′(x) = 1√
1−x2 .

Beispiel 3.3. Berechne die Ableitung von
√
x für x ∈ (0,∞) mit Hilfe vom Umkehrsatz.

Lösung :
Zur Kontrolle berechnen wir direkt:

d

dx

√
x =

1

2
√
x
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Jetzt berechnen wir die Ableitung von
√
x mit dem Umkehrsatz. Zuerst schreiben wir

wieder auf was wir über
√
x und dessen Umkehrfunktion x2 wissen:

f(x) = x2 ⇔ f−1(y) =
√
y ∧ f ′(x) =

dx2

dx
= 2x

f ′(x) =
d

dx

√
x

Umkehrsatz
=

1

f ′(f−1(x))

=
1

f ′(
√
x)

=
1

2
√
x

Also erhalten wir das gleiche Resultat mit dem Umkehrsatz, wie wenn wir direkt die
Ableitung berechnen.

4 Extrema

Sei in diesem Kapitel immer Ω ⊂ R offen, f : Ω→ R, sofern nicht anders definiert.

Definition 4.1: (Struwe 5.4.2)

(i) f heisst auf Ω m-mal differenzierbar, falls f (m− 1)-mal differenzierbar ist mit
differenzierbarer (m− 1)-ter Ableitung f (m−1).
In diesem Fall heisst

f (m) =
df (m−1)

dx
=

dmf

dxm
: Ω→ R

die m-te Ableitung von f .

(ii) f ist von der Klasse Cm(Ω), falls f m-mal differenzierbar ist und falls die Funk-
tionen f = f (0), f ′ = f (1), ..., f (m) stetig sind.

Korollar 4.1: (Struwe 5.5.1)

Ein x0 ∈ Ω heisst (strikte) lokale Minimalstelle von f , falls in einer Umgebung U von
x0 gilt

f(x) ≥ f(x0), ∀x ∈ U (bzw. f(x) > f(x0), ∀x ∈ U \ {x0}).

Korollar 4.2: (Struwe 5.5.1)

Sei f ∈ Cm(Ω), x0 ∈ Ω mit f ′(x0) = ... = f((m−1)(x0) = 0.

(i) Falls m = 2k + 1, x0 lokale Minimalstelle, so folgt f (m)(x0) = 0.

(ii) Falls m = 2k und falls f (m)(x0) > 0, so ist x0 strikte lokale Minimalstelle.
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Satz 11: (Struwe 5.5.4)

Jedes Polynom p : C→ C vom Grad ≥ 1 hat (mindestens) eine Nullstelle.
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