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1 Stetigkeit (Erinnerung)

Definition 1.1: (Struwe 4.2.2)

K C R"™ heisst kompakt, falls jede Folge (x,)neny € K einen Haufungspunkt in K
besitzt, d.h. falls eine Teilfolge A C IN und ein 2y € K existieren mit

n—o00, n€EA
Ty — Xp-

Bemerkung.
Eine Menge K C R™ heisst kompakt, falls sie beschrankt und abgeschlossen ist.

Beispiel 1.1 (Struwe 4.2.2).
(i) Das ”abgeschlossene” Intervall [0, 1] ist kompakt.
(ii) Das "offene” Intervall (0,1) ist nicht kompakt.

Die Beweise sind im Struwe Skript.

1.1 Stetigkeit

Definition 1.2: (Struwe 4.1.3)
Sei Q C RY, f:Q — R™
(i) f heisst stetig an der Stelle xq € 2, falls lim f(x) = f(zo) =: a existiert.

T—xQ
(ii) f heisst an der Stelle xo € Q\ Q stetig erginzbar, falls lim f(z) =: a existert.
Tr—xTQ

(In diesem Fall ist die duch f(zg) = a ergénzte Funktion f stegig an der Stelle
33'0.)

Definition 1.3: (Struwe 4.2.1)

Sei f:QCRY— R™
f heisst stetig auf €2, falls f in jedem Punkt xy € 2 stetig ist.

Definition 1.4: (Burger 3.2.1)

Sei D C R,zy € D. Die Funktion f: D — R ist in xo stetig, falls es fiir jedes € > 0
ein 6 > 0 gibt, so dass fiir alle z € D die Implikation

|2 — x| <6 = |f(x) = flzo)| <&

gilt.

Definition 1.5: (Burger 3.2.1 (Quantorenversion von oben))

Sei D C R,zg € D. Die Funktion f: D — R ist in xo stetig, falls

Ve > 0,36 >0: |z —xo] <0 = |f(x) — f(zo)| <&, VxeD



gilt.

1.2 Gleichmassige Stetigkeit
Definition 1.6: (Struwe 4.7.2)

f € — R" heisst gleichmdssig stetig, falls gilt

Ve >0, 35(e) =0 >0, Vo,y € Q: lz —yl <d=|f(z)— fly)] <e

Satz 1: (Struwe 4.7.3)

Sei 0 C R beschrinkt, f : Q — R” stetig und auf Q stetig ergéinzbar. Dann ist f
gleichmassig stetig.

Satz 2

Sei f: Q) — R stetig und €2 kompakt. Dann ist f gleichmassig stetig.

Bemerkung.
Diesen Satz kann man sich mit der folgenden Merkregel merken:

Stetigkeit auf einer kompakten Menge =  gleichmaéssige Stetigkeit.

Beispiel 1.2. Ist die Funktion f(z) = 5 gleichmissig stetig?

Losung:
Wir fixieren ein € > 0. Wir suche § > 0, sodass fiir alle z,y € Q mit |z — y| < § folgendes
gilt:

|f(@) = fy)| <e.

Fir z,y € [0, 00) gilt:

A ': xQ(y+1)—y2(x+1)‘
r+1 y+1 (@+ 1y +1)

22y + 2% — y?r —y?
(z+1)(y+1)
zy(r —y) +2° =y
(x+1)(y+1)
(z—y)+ (v —y)

(x4+1)(y+1

B Ty +x+y

-kl (5 5)
+

e Ty T Y
= o=yl ((x+1)(y+1) GrO+1) ($+1)(y+1))

Ty

x—i—y)‘




Weil #1 < 1 und y—i’_l < 1, gilt (IH";% < 1. Deshalb konnen wir die folgende Ab-

schatzung machen:

x? y? xy x y
— = |z —y| + +
r+1 y+1 @+Dy+1) (@+Dy+1) (@+y+1)
<1 <1 <1

<1
<lzr—y|ll+1+4+1)
= 3|z — y|

Somit folgt:
x? y? ! €
— <3Blzr—yl<e = |lx—y|l<==:0
s+l y+il— ==yl eyl <3

Da ¢ von z,y unabhéangig ist, folgt damit, dass f gleichmaéssig stetig ist.

1.3 Lipschitz-Stetigkeit
Definition 1.7: (Struwe 4.1.4)

Eine Funktion f : Q € RY — R" heisst Lipschitz stetig mit Lipschitzkonstante L, falls
gilt
If (@) = fWll < Lllz—yll, Vz,ye.

Satz 3

Eine differenzierbare Funktion f : 2 — R ist genau dann Lipschitz-stetig, wenn ihre
erste Ableitung auf {2 beschrankt ist.

Bemerkung.
Die verschiedenen Stetigkeiten hangen wie folgt von einander ab, wobei die Pfeile Imp-
likationen darstell

Ableitung beschrankt

2 kompakt

Beispiel 1.3. Ist die folgende Funktion Lipschit-stetig? Falls ja, bestimme die Lipschitz-
Konstante.

f:(-3,2) =R
v f(z) = 2%+ 4o — 1.



Losung:
Seien x,y € (—3,2) beliebig. Es gilt

|f(z) = fy)| = [2® + 42 — 1 — (4 + 4y — 1)]
= |2? +4r —1— 9> — 4y + 1|
= [a? + 4z — y* — 4y|
= |2* — " + 4(z — )]
=[(z —y)(z +y) +4(z —y)|
=lz+y+4llz -yl

Fiir alle z,y € (—3,2) gilt nach der Dreiecksungleichung |z +y + 4| < || + |y| +4 <
343+ 4 =10. Es ergitbt sich somit:

1f(x) = fW)] = |z +y+ 4|z —y| < 10[z —y].

Die Funktion ist demzufolge Lipschitz-stetig mit Lipschitz-Konstante L = 10.

2 Differential und Differentiationsregeln

Sei in diesem Kapitel immer Q C R offen, f : Q@ — R, zy € €2, sofern nicht anders
definiert.

Definition 2.1: (Struwe 5.1.1)

(1) f heisst differenzierbar an der Stelle zy, falls der Grenzwert

@) = fe) _ fi(wo) = j—i(:vo)

lim
T—T0, THETQ T — X

existiert. In diesem Fall heisst f'(xo) die Ableitung (das Differential) von f an
der Stelle xg.

(i1) Analog heisst f = (f1, ..., fn) : @ = R™ an der Stelle x, differenzierbar, falls jede
der Komponentenfunktionen f; an der Stelle zq differenzierbar ist und f’(z¢) =

(fi(xo), -, fr(T0))-

Definition 2.2: (Struwe 5.1.2)

f:Q — R™ heisst auf Q2 differenzierbar, falls f an jeder Stelle zy € €2 differenzierbar
ist.

Satz 4: (Struwe 5.1.1)

Ist f: Q — R differenzierbar an der Stelle xq € €2, so ist f an der Stelle zy auch
stetig.




Satz 5: (Struwe 5.1.2)

Seien f,g : 0 — R an der Stelle xq € () differenzierbar. Dann sind die Funktionen
f+g, f-gund, falls g(xg) # 0, nach die Funktion f/g an der Stelle x differenzierbar
und es gilt

(i) Linearitét:

(f +9)'(w0) = f'(x0) + ¢ (o)

(ii) Produkteregel:
(f9)'(zo) = f'(20)g(z0) + f(20)g'(x0)

(ili) Quotientenregel:

f'(x0)g(x0) — f(20)g'(20)
g% (o) .

(f/9) (x0) =

Satz 6: (Kettenregel; Struwe 5.1.3)

Sei f: 2 — R an der Stelle xy € 2 differenzierbar und sei g : R — R an der Stelle
yo = f(zo) differenzierbar. Dann ist die Funktion fog : Q@ — R an der Stelle x
differenzierbar und es gilt

(g0 f)(z0) = g'(f(x0))f (o).

Beispiel 2.1. Berechne die Ableitung von | sin(x)|®5®).

Losung:
Wir schreiben den Ausdruck um:

’Sin(x”cos(x) _ elog(lsin(x”ms(z))

— ecos(m) log | sin(z)|

Verwende nun die Ketten- und Produkteregel:

d

_ecos(m) log | sin(z)|

dx

- d
— cos(z) log | sin(z)| 1 .
€ o (cos(z) log | sin(z)|)

d
5’ sin(:c) |cos(x) —

, d
— eoos(@) log | sin(@)] <— sin(z) log |sin(x)| + cos(x) - o log | sin(x)|>
x

Betrachten wir die Ableitung vom Logarithmus ein bisschen genauer:
d 4 og(f(x)) = -1 - F(z) = L@ x) >0
d—log(f(:c)) _ ddx g(f( )) f(x)l f( ) / 7(@) o) f( )
Z @10g<_f<x>> = @) (_f (SL’ ) = Flz) f(x) <0
d !
4 _f'@)




Also ist das folgende unsere Losung:

d .
%| sin ()| = e on ) (_ sin(x) log |sin(x)| + cos(x) - Z?r?ég)

— [sin(a) ) (— sin() log |sin(x)| + Cs?l%)) '

3 Der Mittelwertsatz und Folgerungen

Satz 7: (Struwe 4.6.2)

Sei f : [a,b] — R stetig und streng monoton wachsend. Setze f(a) = ¢, f(b) = d.
Dann ist f : [a,b] — [c,d] bijektiv und f~1 ist stetig.

Satz 8: (Struwe 4.6.3)

Sei f: (a,b) — R stetig und streng monoton wachsend mit monotonen Limites

—o00o <c= inf f(z)< sup f(z)=d < 0.
a<z<b a<z<b

Dann ist f : (a,b) — (¢, d) bijektiv und f~! ist stetig.

Satz 9: (Mittelwersatz; Struwe 5.2.1)

Seien —o0o < a < b < c0. Sei f : [a,b] — R stetig und differenzierbar in (a,b). Dann
existiert o € (a,b) mit

f(b) — f(a)
b—a

f'(xo) ist die Steigung der Sekante durch die Punkte (a, f(a)), (b, f(b)) € G(f).

f) = fla) + f(zo)(b—a) &  f(zo) =

Beispiel 3.1. Zeige na% < é (ﬁ — n%) fiir n € N und o > 0.

(Hinweis: Betrachte die Funktion = auf dem Interval (n —1,n))

Losung:
Wir betrachten die Funktion f(z) = - auf dem Interval [n — 1,n]. Die Funktion ist

[0

auch (n —1,n) stetig und auf (n —1,n) differenzierbar. Die Ableitung ist f'(z) = ——.



Gemiss dem Mittelwertsatz gibt es ein ¢ € (n — 1,n) mit

a 1 f(n)—fln—1)

/
1) cotl n—(n-—1)
1 1
_ no (n—1)x
n—n+1
1 1
_ ne (n—1)~
1
1 1
n® (n—1)
« 1 1

ot (n—1)> no

11/ 1 1
cotl o \(n—1)* no

Der Punkt c liegt im Intervall [n — 1,7}, so dass ¢ < n, d.h. £ <1 Also gilt 5 < L.
Damit folgt

Korollar 3.1: (Struwe 5.2.1)

Seien —oo0 < a < b < 0o. Sei f : [a,b] — R stetig und differenzierbar in (a, b) (wie in
Satz 5.2.1).

(i) Falls f/ =0 auch (a,b), so ist f konstant.

(ii) Falls f/ > 0 (bzw. > 0) auf (a,b), so ist f (streng) monoton wachsend.

Satz 10: (Umkehrsatz; Struwe 5.2.2)

Sei f: (a,b) — R differenzierbar mit f’ > 0 auf (a,b) und seien

—oo<c= inf f(z)< sup f(x)=d < .
a<a<b a<x<b

Dann ist f : (a,b) — (c,d) bijektiv und die Umkehrfunktion f~' : (¢,d) — R ist
differenzierbar mit

(@) = (f(2)", Yz € (a,b),

bzw.
—il\g _ 1 .

Beweis:
Gemiss Korollar 3.1 (ii) ist f streng monoton wachsend und zudem stetig nach Satz 4.
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Gemass Satz 8 ist f : (a,b) — (c,d) bijektiv und f~! ist stetig.

Behauptung: f~! ist differenzierbar, (f~1)(f(zo)) =
Beweis:
Fixiere yo = f(x0). Sei (yx)rew C (¢, d) mit

1
_f/(xo) y VQT().

e = flxr) 2225 g # 90, (K €N).

Es folgt x), # x¢ fiir alle k. Da f~! stetig ist, gilt zudem

zr = " (yk) B2 o = o),

also folgt
—1v/ Mittelwertsatz f_l(yk) - f_l(yO)
€T =
(Y () -
. T — Xo
f (@) = f (o)
o 1 k—)oo\ 1
[ =f(=zo) ¢
W f (Q?())
wie gewiinscht. U

Beispiel 3.2. Berechne die Ableitung von arcsin(x) fiir z € (—1,1) mit Hilfe vom
Umkehrsatz.

Bemerkung: arcsin(z) := sin™'(z), sin®(x) := (sin(z))?

Losung:

Zuerst schreiben wir mal auf was wir iiber arcsin(z) und der Umkehrfunktion sin(z)

wissen:
arcsin(zx) =y << w=sin(y) A sin'(z) = cos(x)

Nun berechnen wir die Ableitung von arcsin(z):

) Umkehrsatz 1
~ sin(arcsin(z))
1
~ cos(arcsin(z))
cos? (.Z’)+iin2(m):1 1

\/1 — sin®(arcsin(z))

arcsin’(z

1
V1—a?

1
1—22°

Beispiel 3.3. Berechne die Ableitung von /z fiir z € (0, 00) mit Hilfe vom Umkehrsatz.

Somit ist arcsin’(z) =

Losung:
Zur Kontrolle berechnen wir direkt:



Jetzt berechnen wir die Ableitung von /2 mit dem Umkehrsatz. Zuerst schreiben wir
wieder auf was wir iiber \/z und dessen Umkehrfunktion 2% wissen:

fW=a & [W=vi A Fa)=t
/ . i g Umke:hrsatz 1
flo) = gve @)
1
~ (V)
1

NG

Also erhalten wir das gleiche Resultat mit dem Umkehrsatz, wie wenn wir direkt die
Ableitung berechnen.

4 Extrema

Sei in diesem Kapitel immer 2 C R offen, f : 2 — R, sofern nicht anders definiert.

Definition 4.1: (Struwe 5.4.2)

(i) f heisst auf Q m-mal differenzierbar, falls f (m — 1)-mal differenzierbar ist mit
differenzierbarer (m — 1)-ter Ableitung f(m~1.
In diesem Fall heisst

_ A 4 R

(m)
! dx dx

die m-te Ableitung von f.

(ii) f ist von der Klasse C™(f2), falls f m-mal differenzierbar ist und falls die Funk-
tionen f = fO, f/ = fMW . f0" stetig sind.

Korollar 4.1: (Struwe 5.5.1)

Ein zy € Q heisst (strikte) lokale Minimalstelle von f, falls in einer Umgebung U von
xo gilt
f(z) > f(xg), Ve e U (bzw. f(z)> f(xo), Yz € U\ {zo}).

Korollar 4.2: (Struwe 5.5.1)
Sei f € C™(Q), 79 € Q mit f'(xg) = ... = (™ V(x0) = 0.
(i) Falls m = 2k + 1, x4 lokale Minimalstelle, so folgt f(™ () = 0.
(ii) Falls m = 2k und falls f'™(z0) > 0, so ist xq strikte lokale Minimalstelle.
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Satz 11: (Struwe 5.5.4)

Jedes Polynom p : € — C vom Grad > 1 hat (mindestens) eine Nullstelle.
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