AML Cheat Sheet

Prob., distributions and identitites

SVD X =UDV',UeR"™ VeR™
— 12

|52 wiwi]” < 30 Juy [ 32 Jvel?

Cauchy-Schwarz

Cov. (univariate) Covz,y] = E[(x — E[z])(y — Ely])

Cov. (mult’vari.) Covlz,y] = Esylzy'] — Eulz]Eyly]"
Viz £ y] = V]z] + V]y] £ 2Cov[z, y]
VielAz + b = Vi [Az] = AV, [z]AT

Sum Rule PX=z)=3 p(X=2Y=y)

Conditional P(X|Y)=P(X,Y)/P(Y)

Bayes’ Rule PY|X) = %

Multi Gaussian

p(xlp, B) = (2m)" [B) 2 exp(—5(x — p) 27 (x — )

Plaile.peo?) = lexp (~ig)
Markov P[Xcze} <E[X }/6X>0 e>0
Hoeffding L. E[e*™] < exp(s?(b — a)?/8)
Hoeffding Thm

P[Sn —ESy > t] < exp(=2t*/ 32 (bi — a:)?)

P(Sy — ES < —1] < exp(—22/ S (b — a)?)
if S, — X, t — ne
Kernels
e Caussian (RBF) kernel: k(z,z’) = exp(—|z — 2’||3/h%)
e Dimension of k(x,x’) = (x'x' +¢)%is (V)
Properties
Symmetry k(z, ) = k( , )
Pos semi-def [, k(x',x)f(x ) (x )dxdx',f € L2, Q CR?
construct 0:x; = (VAevie) e
Identities
Addition k(z,x") = ki(z,2") + kg(m x')
Multiply k(z,x") = ki(z, 2" ) k2 (z, ")
Scalar k(x,:v') cki(x, ") for ¢ > 0
Transform k(z,x") = f(k1 (:c z'))

f polynom with positive coeff. or exp.
func. multiply f(z)ki(z,2')f(z’) for any f
Risks
(y — f(x))? quadratic loss (regr.)

Qy, f(x)) = < Liyzra)} 0-1 loss (class.)

exp(—Byf(z))
Cond. Exp. Risk R(f,X) = [, QY. f(X))
(Total) Exp. Risk R(f) = Ex[R(f, X)]
Emp' Error R(va) = %Z:’lzl Q(yhf(XZ))
Maximum Likelihood Estimators
OML € argmax P(X|0) “E" ], P(x:]0)

exponential loss (class.)
P(Y|X)dY

Definitions: . .

Bias bias(0,) = E[0,] — 0
bias(f(z)] = Ep f(x) — E[Y]a]

Consistency Ve, P[\én —0] > ¢ "0

Score A(@) = %}zl@

o ExplA]=0; o ExplA] = 5505 +1

Fisher Information 1(0) =V [aha%;(zm]

Asymptotical efficiency limn oo (V[fn(21,...,2a)]1(0)) ' =1

Results

Rao-Cramer  Exo[(6 — 0)%] > (1+ 2b;)? /1™ (0) + b7
ML converg. /n(0ML —60) 3 N(0,J7(60)I(60)J " (60))
J(0) = —E[ =5
ML consist. éﬁ“ 5 6o
If M for 0 g(6M*) for g(0)
Bayesian Learning
Maximum a Posteriori 6 € argmaxg p(z|0)p(6)
Prediction:
p(X =a|X) = [p(=]0)p(0]|X)do
Rec. Bayesian Est.
n—1
™) =
Regression
e ~N(0,0) y=XB+¢
Least-square fit f=XTX)"'XTy
f* = opt. estimator B~ N(B,(XTX)16?)
For § = ¢”y unbiased: V[a” 3] < V[cTy]
MSE EpExy(f(X) — y)2 =
variance +ExEp(f(X) —Epf(X))?
bias® +Ex (Ep f(X) - Ey[Y|X])?
noise +IEX v (Y —Ey[Y]X])?
Ridge =(XTX+A) Xy
Gen. Reg. B = argming RSS(8) + )\Z?zl 18519

bias(f) = E[f] - f* Var(f] = E[(f - ELf])®

Bayesian Linear Regression

Model : Y =XB +¢, e~ N(0,07)
Likelihood : p(Y|X,8,0%) = N(XB,0?)
Prior : p(B|A) = N(0,A™")
Posterior : p(B|X,y,A) = N(ug, )

5= (X"X+0*A) ' X ySs = (XTX +02A) 7!
(B—ns) S5 (B—ns) =B"55"8—28" 55" s + 1g 25 s
Conditioning a Gaussian: p(xa|xs) = N (Xa|ttals, Zals)

Halb = Ha —+ Eabngl (Xb - ,LLb)y Ea|b =Yqa — Z0,1321;,121)61
Aaa = (Eaa - Eabzb_blzba)il,Aab = _I\GCLZ:a,bz:&y1
Gaussian Process

Joint distribution of [y, yn+1] is given by
y|X, 0% ~ N(0,XTAT'X + ¢°I), kernelized version:

C, k
(x5 )

C,=K+71, c= E(Tnt1,Tns1) + oad
k= k(zni1,X) K =k(X,X)

p al :N ai | u1 Z11 Z12

ao as uz| | Xa1 oo
a;,u; € R ;€ R PSD; 215 € R/ PSD
az,uy € RY Sy € R/ PSD; 55,1 € R PSD

Predictive density:
Pni1lTni1, X,¥) = N(tint1,0m41)
pnir =k Crly on=c—k'C.'k
Numerical Estimation Techniques
Cross-Validation

fitted models [V € argminscr IZ\ZV\ gz, (Vi — f(@))?
pred. error Rv =1 2 2 ien(Yi — F70 (@))?
unbiasedness NUZ D" >m (exam2018 k-fold CV)
Bootstrap
It works if RT(F,F*) — R (F, F) 5 0
bootst. avg risk: R = %% Z o Qya, [T b(z;))
Sols for overlap: C:l ={je [B] : xi Q Z*3y

RO = I3 LSl £ ()
(R* fit on trainset) — R'%? = 0.368R* + 0.632R™Y

RO6325) — (1 _ )« B* + HRD
b= Shne G= AR = h N S s f)
Jackknife

A;il(l’l, ceey Li—1y Ljf1y oeny CL’n) = gn_l(CCl, ooy Li—1y Ljf1y oeny :Iin)

= %z Sty bias”™ = (n —1)(Sn — Sn)
i=1

(Jackknife) Debiasd estm. S7% =3, — bias’™
Tests and criteria

Let Xla --~7Xn ~ Q(X) i.i.d. and HO : Q PO 7—[1 : Q — Pl- Test
Po(z1,
9@y ) = O(accepted) W >T
1(rejected) };1’(272 <T

Then o™ = Eolg(z1,...,zn)] and B* =1 — Eq[g(z1, ..., 5 )] Assume
that we know the log likelihood function (loss) of the model
Bayes Factor p(X|M)/p(X|M;) (4)

(%) > 1 take My, p(X| M) fp X |0k, M) p(0r| My)dOx
BIC (minimise) —21og(p(X|0r, My)) + k' logn

Laplace approx. (k' = #free params in My)

log p(X[Mp) =log  p(X|0k, M) —log(n)k’/2+ O(1)

MDL —log p(X|[0k) — log p(0k)

AIC —2log(p(X|0r)) + 2k

KL Dpllp) = ~ [ pla)log (25202 do

TIC —21og(p(X|0k)) + 2trace[I (k) J; (0k))]

AIC is asymptotically equivalent to LOOCYV for ordinary linear
regression models.
Linear Discriminant Functions
Gradient Descent ar+1 = ar — M VJ (ax)
J(ak+1) ~ J(ak) + VJT(ak;Jrl — ak.) + %(ak+1 — ak)TH(ak+1 — ak)
oPT _ HvJi?

n = VITHV ] .
Newton’s Rule Ap+1 = a — VJ( k)

J(a) = Ziejnw( fl:)
A1 = Ak + Nk Dz pme T
B? = max; ¢ gme ||Ti||*

(v)~2p%]all*

Percep loss
Percep update

¥ = min; g (a7 5)
Max steps
Bayesian view:



Prior

PY =y)=my,
Wyp(x‘y)
. T2pz ()

=miny<i > L(z,p)p

Posterior demsity p(y|z) =

(@) = {y 3. Lz w)p(zl)
D

else
Outlier classi.: mopo(z) > max{(1 — d)p(z), max.7.p.(z)}
Fisher’s Linear Discriminant Analysis (LDA)

(z]lz) <d

sample avg Mo = e 2z, Tra = | Ao
projected avg Ma = e Zzex wT:v =wime
class scatter Yo = Zwaexa( —ma)(z —ma)T

within scatter Xw =D 1ca<k Ba
Yo =wlX,w

J(w) = w (m1—ma) (m1—m2)" w)

projected scatter

Fisher’s Separation

WXy w
yields W X E‘jvl (m1 —ma)
Mean scatter Yp = (m1 —ma)(m1 — mg)T
—1 _ wTEBw
result EW EB’LU = T w
Lagrangian Optimization
min f(w) weQCR
st.gi(w)<0 1<:<k
hilw)=0 1<j<m

£(w. 0, B) = (W) + D augi(w) + 3 Bihy (w)

o
Bw = =0

ngcG(a,ﬁ) withf(ex, B) = inf L(w, at, B)

st.a; >0
Duality gap A := L(w™,a™,8") — 0(a™, 8%)
Strong duality, i.e. convex obj. fct f & convex domain, then the
duality gap is zero.

KKT Conditions: f € C' and g;, h; are affine, then w* is an
optimum if ™, 3 satisfy

OL(wW*, ", 3") . Oaﬁ(w*,a*,,ﬁ*) —0
ow - [9J6] o
a;gi(w") = 0,gi(w") <0,a; >0

SVM

Soft Margin Geometric problem formulation

Primal minWTﬁ Iwlw+CYr &
zi(wWw'y, +wo) >1—-& & >0
T.T
Dual maXe Zign Qi — % Zign ngn QijZiZiy; Y
C 2 (67 2 07Zi<n 20y = 0
Solution w{ = (Max;..,——1 W* y, +min;..,—1 w*y,;)/2

* *
W= ZieSV Q; 2y,

9Y) =D icsy 0]y, y + wp
By the KKT condition, & (a; — C') = 0, non-zero slack variable can
only occur if a; = C.
The optimal margin is given by: w' w = Yiesy
Multi-class SVM: w” = (w7, ..., wZ).

Primal minyezw w+CY,_ &

>0 (Wiy,+ws.0) —maxey, (Wly, +w.0) >1—§
Structured SVM:
Primal miny ¢ %WTW +CY ., &ist &>0

— IMaXzz£z; [A(z7 Zl) + V;T‘I’(Zv YZ)] > =&
—WT\II(z,yi) > A(z,2zi) — & Vi,Vz # zz)
— 3 Y Y ek in e Wi(zk) T (2)
+ 20000 2o iz

s.t. C > szelc aik > 0, agp > 0,Vi,Vk
Prediciton h(y) = argmax.ex {WTw(z, y)}
Ensemble

If we combine different regressors: VIf(z)] ~
bias(f ( N=% ZB bias(f:(z)]

Boosting: Welghted models and weighted training data instead of
bootstrapping.

®) ®)
o Y W ey )y} / D W)
i=1 =1

l—e _ log < p(y = 1|z)
€ p(y = —1|z)

Vi w; + w; eXp(ab]I{Cb(Ii)#yi})

cg(w) = sign <Z abcb(a:)>
b=1

avg exp loss = & Z]\;l exp(—yiéa(x;))
ErradaBoost = exp(— h(x)Sign(Zle asys(z)))
PAC Learning
error

(e,0) criterion:
Strong PAC L.:

WT‘I’(Z’L7 YZ)
(WT\II(zi,yi)
Dual minw,¢

o2

B

ap < log ) (log-odds ratio)

error(h) = Pyuple(z) # h(x)]
Px y[R(én) < R(cPoves) 4 e >1-9¢
holds for arbitrarily small €

Weak PAC L.: non-trivially large e

PAC learnability P[R(é,) <e]>1-94
efficiently A runs in poly time in % and %
Results: )

R(¢&;,) — infeec R(c) < 2sup.cc |Rn(c) — R(c)]

< 2N exp(—2ne?)

Plsup,ce [fin(c) — Be)| > ¢
+\/(logN —log(6/2))/2n

Implying: R(c) < Rn(c)
X shattered by A if

{XNA|A e A} contains all subsets of X

VC Dim of A =max{n:3X  s.t.|X shattered by A, |X| =n}
score score(A, X) = {X NA|A € A}
shattering coeff s(A,n) = maxx.| x|=n score(A, X)

If Vg >2(Va=VCdim. of A): s(A4,n)<n"
P[R(c;,) — infeecR(c) > €] < 85(A,n) exp(—ne®/32)
Non Paramteric Bayesian Methods

Beta function B(a b) = Fr(zig),a b>0
fOOO e~ T o~ 1dl’
- 4 1(1 &C)b 1
Beta(z|a,b) = Bas % €[0,1]
. Ie_ k!
Dir(x|a) = k e

Finite Gaussian Mix p(x;]|0) =

Stick breaking process (GEM distribution):

B ~ Beta(l,a)  pi = f2(1l = 12 pi),

Chinease Restaurant Process

P(P) = 405 TLep(Inl = D! E[#K] = S, 2% ~ O(alog N)
7L s ep

P[Customer n + 1 joins table 7 € P U {0}|P] = {az"

k=1,2,..

atn ow.

Dirichlet Mixture Model

Base Measures
cluster prob.
Category assignment
Data Sample

De Finetti’s Theorem
p(X1,..., Xn) = [[]p(z:i|G)dP(G)
Gibbs Sampling

pe ~ N (o, 00)

p = (p1,p2,..) ~ GEM(c)
z; ~ Categorical(p)

Ty~ N(/in, ) 0)

p(zi = k|z—i, x, a, p) o< p(2i = klz—i, &) p(zi|x—i, 20 = k,2—i, p)

Prior Likelihood

%p(xﬂx_i,k, p) For existing k

p(zi = klz—i, %X, a, 1) =
ﬁp(mlu)

Otherwise

p(mi,xfi,klu)=/ (@ilw) | [ ] s lmm)

J#i
Gaussian-mixtures and EM estimation
0= {7Tc7 My 03}5:1

p(ki|po, o0)dp,,

Parameters

k Gaussian Mix. P(x;|0) = 25:1 e P(xi|c, pre, 02)
k
Do Te=1
log likelihood  L(X|0) =log P(X|0) =73 ", log P(x:|6)

= Z?:l IOg Zf:l WCP(.TZ'|C, He, 03)
Define binary latent variables M;. € {0,1} where M;. indicates that
x; is generated by component c. log likelihood
L(X, M|6) =log [[;_ HC (TP (i, pe, o)) Mie
L(x,M|0) = Zi:l 20:1 M;clog(meP(xile, pre, Uz))
Expectation over the latent va. (’yiC = EM‘X’Q[MiC])
Q(0) := Enrja o[ L(X, M|0)] = 30, S0, vie log(me P(wilc, e, 02))
EM-estimation algo e E-step compute 7;c, 6 const

e M-step compute 0, ;. const
E-step: E]y[‘xﬂ[Mic] =1- P(M,c = 1‘%‘“ ) +0 P( ic — O‘Jiz, )
— o ) — 0\ — P(zilc,0)P(c|0)
= P(Mic = 1]z;,0) = P(c|xs,0) = ERT)
_ _ mePilepe,o?)
Sk 7 P(@iling.03)

M-step:
(i) pe from argmaxg Q(6):

Ié) _ _ i1 Yie®Ti
2,00 =0 = He = S
(ii) oc from arg maxy Q(0):

I ic\Ti—He 2
2Q0) =0 = o? = Zingelnin)
(ii) . from arg maxg Q(6): constraint » m. =1
L0 ==QO) + Moy me —1) = 52L(0,)) =0

n k n
Sy, ’Yick: AT € 3 oy Diy
A4 Z?:l D ey Yie = Z?:I L=2A = e =

c
Yie = A 21:1 e
Z?:l Yic
n
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