
AML Cheat Sheet
Prob., distributions and identitites
SVD X = UDV>,U ∈ Rn×d,V ∈ Rd×d

Cauchy-Schwarz
∣∣∑

i uivi
∣∣2 ≤∑j |uj |

2∑
k |vk|

2

Cov. (univariate) Cov[x, y] = E[(x− E[x])(y − E[y])

Cov. (mult’vari.) Cov[x, y] = Ex,y[xy>]− Ex[x]Ey[y]>

V [x± y] = V [x] + V [y]± 2Cov[x, y]

Vx[Ax+ b] = Vx[Ax] = AVx[x]A>

Sum Rule P (X = x) =
∑
y p(X = x, Y = y)

Conditional P (X|Y ) = P (X,Y )/P (Y )

Bayes’ Rule P (Y |X) = P (X|Y )P (Y )
P (X)

Multi Gaussian

p(x|µ,Σ) = ((2π)d· |Σ|)−1/2 exp(− 1
2
(x− µ)>Σ−1(x− µ))

P (xi|c, µc, σ2
c ) = 1√

2πσ2
c

exp
(
− (xi−µc)2

2σ2
c

)
Markov P [X ≥ ε] ≤ E[X]/ε,X ≥ 0, ε > 0
Hoeffding L. E[esX ] ≤ exp(s2(b− a)2/8)
Hoeffding Thm

P [Sn − ESn ≥ t] ≤ exp(−2t2/
∑

(bi − ai)2)
P [Sn − ESn ≤ −t] ≤ exp(−2t2/

∑
(bi − ai)2)

if Sn → X̄n t→ nε

Kernels
• Gaussian (RBF) kernel: k(x, x′) = exp(−‖x− x′‖22/h2)
• Dimension of k(x,x′) = (x>x′ + c)d is

(
N+d
d

)
Properties
Symmetry k(x, x′) = k(x′, x)

Pos semi-def
∫

Ω
k(x′,x)f(x)f(x′)dxdx′, f ∈ L2,Ω ⊆ Rd

construct θ : xi 7→ (
√
λtvit)

n
t=1

Identities
Addition k(x, x′) = k1(x, x′) + k2(x, x′)
Multiply k(x, x′) = k1(x, x′)k2(x, x′)
Scalar k(x, x′) = ck1(x, x′) for c > 0
Transform k(x, x′) = f(k1(x, x′))

f polynom with positive coeff. or exp.
func. multiply f(x)k1(x, x′)f(x′) for any f

Risks

Q(y, f(x)) =


(y − f(x))2 quadratic loss (regr.)

I{y 6=f(x)} 0-1 loss (class.)

exp(−βyf(x)) exponential loss (class.)

Cond. Exp. Risk R(f,X) =
∫
Y Q(Y, f(X))P (Y |X)dY

(Total) Exp. Risk R(f) = EX [R(f,X)]

Emp. Error R̂(f,X) = 1
n

∑n
i=1 Q(yi, f(Xi))

Maximum Likelihood Estimators
θ̂ML ∈ arg maxP (X|θ) i.i.d.=

∏n
i=1 P (xi|θ)

Definitions:
Bias bias(θ̂n) = E[θ̂n]− θ

bias[f̂(x)] = ED f̂(x)− E[Y |x]

Consistency ∀ε, P [|θ̂n − θ| > ε]
n→∞→ 0

Score Λ(θ) := ∂ logP (x|θ)
∂θ

• EX|θ[Λ] = 0; • EX|θ[Λ] = ∂
∂θ
bθ̂ + 1

Fisher Information I(θ) = V
[
∂ logP (x|θ)

∂θ

]
Asymptotical efficiency limn→∞(V[θ̂n(x1, ..., xn)]I(θ))−1 = 1

Results
Rao-Cramer EX|θ[(θ̂ − θ)2] ≥ (1 + ∂

∂θ
bθ̂)

2/I(n)(θ) + b2
θ̂

ML converg.
√
n(θ̂ML

n − θ0)
D→ N (0, J−1(θ0)I(θ0)J−1(θ0))

J(θ) = −E[ ∂
2 logP (x|θ)
∂θ∂θT

]

ML consist. θ̂ML
n

p→ θ0

If θ̂ML for θ g(θ̂ML) for g(θ)

Bayesian Learning

Maximum a Posteriori θ̂ ∈ arg maxθ p(x|θ)p(θ)
Prediction:

p(X = x|X ) =
∫
p(x|θ)p(θ|X )dθ

Rec. Bayesian Est.

p(θ|Xn) = p(xn|θ)p(θ|Xn−1)∫
p(xn|θ)p(θ|Xn−1)dθ

Regression
ε ∼ N (0, σ) y = Xβ + ε

Least-square fit β̂ = (XTX)−1X>y

f∗ = opt. estimator β̂ ∼ N (β, (XTX)−1σ2)

For θ̂ = cTy unbiased: V[aT β̂] ≤ V[cTy]

MSE EDEX,Y (f̂(X)− Y )2 =

variance +EXED(f̂(X)− ED f̂(X))2

bias2 +EX(ED f̂(X)− EY [Y |X])2

noise +EX,Y (Y − EY [Y |X])2

Ridge β̂ = (XTX + λI)−1X>y

Gen. Reg. β̂ = arg minβ RSS(β) + λ
∑d
j=1 |βj |

q

bias(f̂) = E[f̂ ]− f∗ V ar[f̂ ] = E[(f̂ − E[f̂ ])2

Bayesian Linear Regression

Model : Y = Xβ + ε, ε ∼ N (0, σ2)

Likelihood : p(Y |X, β, σ2) = N (Xβ, σ2)

Prior : p(β|Λ) = N (0,Λ−1)

Posterior : p(β|X,y,Λ) = N (µβ ,Σβ)

µβ = (XTX + σ2Λ)−1XTyΣβ = σ2(XTX + σ2Λ)−1

(β − µβ)>Σ−1
β (β − µβ) = β>Σ−1

β β − 2β>Σ−1
β µβ + µ>β Σ−1

β µβ

Conditioning a Gaussian: p(xa|xb) = N (xa|µa|b,Σa|b)
µa|b = µa + ΣabΣ

−1
bb (xb − µb),Σa|b = Σaa − ΣabΣ

−1
bb Σba

Λaa = (Σaa − ΣabΣ
−1
bb Σba)−1,Λab = −ΛaaΣabΣ

−1
bb

Gaussian Process
Joint distribution of [y, yn+1] is given by
y|X, σ2 ∼ N (0,XTΛ−1X + σ2I), kernelized version:

p

([
y

yn+1

]
|xn+1,X, σ

2

)
= N

(
0,

[
Cn k
kT c

])
Cn = K + σ2In c = k(xn+1, xn+1) + σ2

k = k(xn+1,X) K = k(X,X)

p

([
a1

a2

])
= N

([
a1

a2

]
|
[
u1

u2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
a1,u1 ∈ Re; Σ11 ∈ Re×e PSD; Σ12 ∈ Re×f PSD

a2,u2 ∈ Rd; Σ22 ∈ Rf×f PSD; Σ2,1 ∈ Rf×e PSD

Predictive density:

p(yn+1|xn+1,X,y) = N (µn+1, σ
2
n+1)

µn+1 = kTC−1
n y σ2

n+1 = c− kTC−1
n k

Numerical Estimation Techniques
Cross-Validation
fitted models f̂−ν ∈ arg minf∈F

1
|Z\Zν |

∑
i 6∈Zν (yi − f(xi))

2

pred. error R̂cv = 1
n

∑
i≤n(yi − f̂−κ(i)(xi))

2

unbiasedness
N(k−1)

k
≥ m (exam2018 k-fold CV)

Bootstrap
It works if Rstrn (F̂ , F̂ ∗)−Rstrn (F, F̂ )

P→ 0

bootst. avg risk: R̂∗ = 1
B

1
n

∑B
b=1

∑n
i=1 Q(yi, f̂

∗b(xi))
Sols for overlap: C−i := {j ∈ [B] : xi 6∈ Z∗j}

R̂(1) = 1
n

∑n
i=1

1
|C−i|

∑
b∈C−i l(yi, f

∗b(xi))

(R̂∗ fit on trainset) R̂.632 = 0.368R̂∗ + 0.632R̂(1)

R̂(0.632+) = (1− ŵ) ∗ R̂∗ + ŵR̂(1)

ŵ = 0.632

1−0.368Ĝ
, Ĝ = R̂(1)−R̂∗

γ̂−R̂∗ , γ̂ = 1
n2

∑N
i=1

∑N
j=1 l(yi, f̂(xj))

Jackknife

Ŝ−in−1(x1, ..., xi−1, xi+1, ..., xn) = Ŝn−1(x1, ..., xi−1, xi+1, ..., xn)

S̃n :=
1

n

n∑
i=1

Ŝ−in−i biasJK := (n− 1)(S̃n − Ŝn)

(Jackknife) Debiasd estm. ŜJK = Ŝn − biasJK

Tests and criteria
Let X1, ..., Xn ∼ Q(x) i.i.d. and H0 : Q = P0 H1 : Q = P1. Test

g(x1, ..., xn) =

{
0(accepted) P0(x1,...,xn)

P1(x1,...,xn)
> T

1(rejected) P0(x1,...,xn)
P1(x1,...,xn)

≤ T
Then α∗ = E0[g(x1, ..., xn)] and β∗ = 1− E1[g(x1, ..., xn)] Assume
that we know the log likelihood function (loss) of the model
Bayes Factor p(X|Mk)/p(X|Ml) (i)
(i) > 1 take Mk p(X|Mk) =

∫
p(X|θk,Mk)p(θk|Mk)dθk

BIC (minimise) −2 log(p̂(X|θ̂k,Mk)) + k′ logn
Laplace approx. (k′ = #free params in Mk)

log p(X|Mk) = log p(X|θ̂k,Mk)− log(n)k′/2 +O(1)
MDL − log p(X|θk)− log p(θk)

AIC −2 log(p̂(X|θ̂k)) + 2k

KL D(p||p̂) = −
∫
p(x) log

(
p̂(x|θ̂k)
p(x)

)
dx

TIC −2 log(p̂(X|θ̂k)) + 2trace[I1(θk)J−1
1 (θk)]

AIC is asymptotically equivalent to LOOCV for ordinary linear
regression models.

Linear Discriminant Functions
Gradient Descent ak+1 = ak − ηk∇J(ak)
J(ak+1) ≈ J(ak) +∇JT (ak+1 − ak) + 1

2
(ak+1 − ak)TH(ak+1 − ak)

ηOPT = ||∇J||2

∇JTH∇J
Newton’s Rule ak+1 = ak −H−1∇J(ak)
Percep loss J(a) =

∑
x̃∈X̃mc(−a

T x̃)
Percep update ak+1 = ak + ηk

∑
x̃∈X̃mc x̃

γ = mini∈X̃mc(â
T x̃i) β2 = maxi∈X̃mc ||x̃i||

2

Max steps (γ)−2β2||â||2
Bayesian view:



Prior P (Y = y) = πy

Posterior density p(y|x) =
πyp(x|y)∑
z πzpz(x)

c(x) =

{
y

∑
z L(z, y)p(z|x) = minρ≤k

∑
L(z, ρ)p(z|x) ≤ d

D else

Outlier classi.: πOpO(x) ≥ max{(1− d)p(x),maxzπzpz(x)}
Fisher’s Linear Discriminant Analysis (LDA)
sample avg mα = 1

nα

∑
x∈Xα x, nα = |Xα|

projected avg m̃α = 1
nα

∑
x∈Xα wTx = wTmα

class scatter Σα =
∑
xα∈Xα(x−mα)(x−mα)T

within scatter ΣW =
∑

1≤α≤k Σα

projected scatter Σ̃α = wTΣαw

Fisher’s Separation J(w) = wT (m1−m2)(m1−m2)Tw)
wΣWw

yields w ∝ Σ−1
W (m1 −m2)

Mean scatter ΣB = (m1 −m2)(m1 −m2)T

result Σ−1
W ΣBw = wTΣBw

wTΣww
w

Lagrangian Optimization
min f(w) w ∈ Ω ⊆ Rd

s.t. gi(w) ≤ 0 1 ≤ i ≤ k
hj(w) = 0 1 ≤ j ≤ m

L(w,α,β) = f(w) +

k∑
i=1

αigi(w) +

m∑
j=1

βjhj(w)

∂L
∂w
|w=w∗ = 0

max
α,β

θ(α,β) withθ(α,β) = inf
w
L(w,α,β)

s.t. αi ≥ 0

Duality gap ∆ := L(w∗, α∗, β∗)− θ(α∗, β∗)
Strong duality, i.e. convex obj. fct f & convex domain, then the
duality gap is zero.

KKT Conditions: f ∈ C1 and gi, hi are affine, then w∗ is an
optimum if α∗,β∗ satisfy

∂L(w∗,α∗,β∗)

∂w
= 0

∂L(w∗,α∗,β∗)

∂β
= 0

α∗i gi(w
∗) = 0,gi(w

∗) ≤ 0, α∗i ≥ 0

SVM
Soft Margin Geometric problem formulation
Primal minw,ξ

1
2
wTw + C

∑n
i=1 ξi

zi(w
Tyi + w0) ≥ 1− ξi ξi ≥ 0

Dual maxα

∑
i≤n αi −

1
2

∑
i≤n

∑
j≤n αiαjzizjy

T
i yTj

C ≥ αi ≥ 0,
∑
i≤n ziαi = 0

Solution w∗0 = (maxi:zi=−1 w∗Tyi + mini:zi=1 w∗Tyi)/2
w∗ =

∑
i∈SV α

∗
i ziyi

g∗(y) =
∑
i∈SV ziα

∗
iy

T
i y + w∗0

By the KKT condition, ξi(αi − C) = 0, non-zero slack variable can
only occur if αi = C.
The optimal margin is given by: w>w =

∑
i∈SV α

∗
i

Multi-class SVM: wT = (wT
1 , ...,w

T
n ).

Primal minw,ξ
1
2
wTw + C

∑
i≤n ξi

ξi ≥ 0 (wT
ziyi + wzi,0)−maxz 6=zi(w

T
z yi + wz,0) ≥ 1− ξi

Structured SVM:
Primal minw,ξ

1
2
wTw + C

∑
i≤n ξi s.t. ξi ≥ 0

wTΨ(zi,yi) −maxz 6=zi [∆(z, zi) + wTΨ(z,yi)] ≥ −ξi(
wTΨ(zi,yi) −wTΨ(z,yi) ≥ ∆(z, zi)− ξi ∀i,∀z 6= zi

)
Dual minw,ξ − 1

2

∑n
i=1

∑n
j=1

∑
zk∈K

αikαjkΨi(zk)>Ψj(zk)

+
∑n
i=1

∑
zk∈K

αik∆i(zk)

s.t. C ≥
∑
zk∈K

αik ≥ 0, αik ≥ 0, ∀i,∀k
Prediciton h(y) = arg maxz∈K

{
w>ψ(z,y)

}
Ensemble
If we combine different regressors: V [f̂(x)] ≈ σ2

B

bias[f̂(x)] = 1
B

∑B
i=1 bias[f̂i(x)]

Boosting: Weighted models and weighted training data instead of
bootstrapping.

εb ←
n∑
i=1

w
(b)
i I{cb(xi)6=yi}/

n∑
i=1

w
(b)
i

αb ← log
1− εb
εb

= log

(
p(y = 1|x)

p(y = −1|x)

)
(log-odds ratio)

∀i wi ← wi exp(αbI{cb(xi)6=yi})

ĉB(x) = sign

(
B∑
b=1

αbcb(x)

)
avg exp loss = 1

N

∑N
i=1 exp(−yiĉB(xi))

ErrAdaBoost = exp(−h(x)sign(
∑B
b=1 αbyb(x)))

PAC Learning
error error(h) = Px∼D[c(x) 6= h(x)]
(ε, δ) criterion: PX,Y [R(ĉn) ≤ R(cBayes) + ε] > 1− δ
Strong PAC L.: holds for arbitrarily small ε
Weak PAC L.: non-trivially large ε
PAC learnability P [R(ĉn) ≤ ε] ≥ 1− δ
efficiently A runs in poly time in 1

ε
and 1

δ
Results:
R(ĉ∗n)− infc∈C R(c) ≤ 2 supc∈C |R̂n(c)−R(c)|
P [supc∈C |R̂n(c)−R(c)| > ε] ≤ 2N exp(−2nε2)

Implying: R(c) ≤ R̂n(c) +
√

(logN − log(δ/2))/2n

X shattered by A if
{X ∩A|A ∈ A} contains all subsets of X
VC Dim of A = max{n : ∃X s.t.|X shattered by A, |X| = n}
score score(A, X) = |{X ∩ A|A ∈ A}|
shattering coeff s(A, n) = maxX:|X|=n score(A, X)
If VA > 2 (VA = VC dim. of A): s(A, n) ≤ nVA
P [R(c∗n)− infc∈CR(c) > ε] ≤ 8s(A, n) exp(−nε2/32)

Non Paramteric Bayesian Methods
Beta function B(a, b) = Γ(a)Γ(b)

Γ(a+b)
, a, b > 0

Γ(a) =
∫∞

0
e−xxa−1dx

Beta(x|a, b) = xa−1(1−x)b−1

B(a,b)
, x ∈ [0, 1]

Dir(x|α) =
∏n
k=1 x

αk−1

k
B(α)

Finite Gaussian Mix p(xi|θ) =
∑K
k=1 ρkN (xi|µk, σk)

Stick breaking process (GEM distribution):

βk ∼ Beta(1, α) ρk = β2(1−
∑k−1
i=1 ρi), k = 1, 2, ...

Chinease Restaurant Process

P (P) = α|P|

α(n)

∏
τ∈P(|τ | − 1)! E[#k] =

∑N
i=1

α
α+i
∼ O(α logN)

P[Customer n+ 1 joins table τ ∈ P ∪ {∅}|P] =

{
|τ |
α+n

τ ∈ P
α

α+n
ow.

Dirichlet Mixture Model
Base Measures µk ∼ N (µ0, σ0)
cluster prob. ρ = (ρ1, ρ2, ...) ∼ GEM(α)
Category assignment zi ∼ Categorical(ρ)
Data Sample xi ∼ N (µzi , σ)

De Finetti’s Theorem
p(X1, ..., Xn) =

∫ ∏
p(xi|G)dP (G)

Gibbs Sampling

p(zi = k|z−i,x, α,µ) ∝ p(zi = k|z−i, α)︸ ︷︷ ︸
Prior

p(xi|x−i, zi = k, z−i,µ)︸ ︷︷ ︸
Likelihood

p(zi = k|z−i,x, α,µ) =

{
Nk,−i
α+N−1

p(xi|x−i,k,µ) For existing k
α

α+N−1
p(xi|µ) Otherwise

p(xi,x−i,k|µ) =

∫
p(xi|µk)

∏
j 6=i

p(xj |µk)

 p(µk|µ0, σ0)dµk

Gaussian-mixtures and EM estimation
Parameters θ = {πc, µc, σ2

c}kc=1

k Gaussian Mix. P (xi|θ) =
∑k
c=1 πcP (xi|c, µc, σ2

c )∑k
c=1 πc = 1

log likelihood L(X|θ) = logP (X|θ) =
∑n
i=1 logP (xi|θ)

=
∑n
i=1 log

∑k
c=1 πcP (xi|c, µc, σ2

c )
Define binary latent variables Mic ∈ {0, 1} where Mic indicates that
xi is generated by component c. log likelihood

L(X ,M |θ) = log
∏n
i=1

∏k
c=1(πcP (xi|c, µc, σ2

c ))Mic

L(X ,M |θ) =
∑n
i=1

∑k
c=1 Mic log(πcP (xi|c, µc, σ2

c ))
Expectation over the latent va.

(
γic := EM|X ,θ[Mic]

)
Q(θ) := EM|X ,θ[L(X ,M |θ)] =

∑n
i=1

∑k
c=1 γic log(πcP (xi|c, µc, σ2

c ))

EM-estimation algo • E-step compute γic, θ const
• M-step compute θ, γic const

E-step: EM|X ,θ[Mic] = 1 · P (Mic = 1|xi, θ) + 0 · P (Mic = 0|xi, θ)
= P (Mic = 1|xi, θ) = P (c|xi, θ) = P (xi|c,θ)P (c|θ)

P (xi|θ)

=
πcP (xi|c,µc,σ2

j )∑k
j=1 πjP (xi,|j,µj ,σ2

j )

M-step:
(i) µc from arg maxθ Q(θ):
∂
∂µc

Q(θ) = 0 =⇒ µc =
∑n
i=1 γicxi∑n
i=1 γic

(ii) σc from arg maxθ Q(θ):
∂
∂σc

Q(θ) = 0 =⇒ σ2
c =

∑n
i=1 γic(xi−µc)

2∑n
i=1 γic

(ii) πc from arg maxθ Q(θ): constraint
∑
c πc = 1

L(θ, λ) = −Q(θ) + λ(
∑k
c=1 πc − 1) ⇒ ∂

∂πc
L(θ, λ) = 0

⇔
∑n
i=1 γic = λπc ⇔

∑k
c=1

∑n
i=1 γic = λ

∑c
i=1 πc

⇔
∑n
i=1

∑k
c=1 γic =

∑n
i=1 1 = λ ⇔ πc =

∑n
i=1 γic
n
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