
1
3

C
O
N
V
O
L
U
T
IO

N
A
L

N
E
U
R
A
L

N
E
T
W

O
R
K
S

1 Probability

Sum Rule P (X = xi) =
P

J

j=1 p(X = xi, Y = yi)

Product rule P (X,Y) = P (Y |X)P (X)

Independence P (X,Y) = P (X)P (Y)

Bayes’ Rule P (Y |X) = P (X|Y)P (Y)
P (X) = P (X|Y)P (Y)

kP

i=1
P (X|Yi)P (Yi)

Cond. Ind. X ? Y |Z =) P (X,Y |Z) = P (X |Z)P (Y |Z)

Cond. Ind. X ? Y |Z =) P (X |Y, Z) = P (X |Z)

E [X] =
R
X t · fX(t) dt =: µX

Var [X] = E
⇥
(X � E [X])2

⇤
=
R
X (t� E [X])2fX(t) dt = E

⇥
X2⇤� E [X]2

Cov (X,Y) = Ex,y [(X � Ex [X])(Y � Ey [Y])]

Cov(X) := Cov (X,X) = Var [X]

X,Y independent =) Cov (X,Y) = 0

“X2 = XXT ”� 0 ((symmetric) positive semidefinite)

Var [X] = E
⇥
X2⇤� E [X]2

Var [AX] = AVar [X]AT Var [aX + b] = a2 Var [X]

Var
⇥P

n

i=1 aiXi

⇤
=
P

n

i=1 a2
i
Var [Xi] + 2

P
i,j,i<j

aiaj Cov (Xi, Xj)

Var
⇥P

n

i=1 aiXi

⇤
=
P

n

i=1 a2
i
Var [Xi] +

P
i,j,i 6=j

aiaj Cov (Xi, Xj)

@

@t
P (X  t) = @

@t
FX(t) = fX(t) (derivative of c.d.f. is p.d.f)

f↵Y (z) = 1
↵
fY (z

↵
)

Empirical CDF: F̂n(t) = 1
n

P
n

i=1 1{Xit}
Empirical PDF: f̂n(t) = 1

n

P
n

i=1 �(t�Xi) (continuous)

Empirical PDF: p̂n(t) = 1
n
|x = t| x 2 D (discrete)

T.The MGF X(t) = E
h
etX

i
characterizes the distr. of a rv

Be(p): pet + (1� p) N (µ,�): exp
�
µt + 1

2�
2t2
�

Bin(n, p): (pet + (1� p))n Gam(↵, �):
⇣

1
a��t

↵

⌘
for t < 1/�

Pois(�): e�(et�1)

T. If X1, . . . , Xn are ind. rvs with MGFs MXi
(t) = E

h
etXi

i
, then

the MGF of Y =
P

n

i=1 aiXi is MY (t) =
Q

n

i=1 MXi
(ait).

T.Let X, Y be ind., then the p.d.f. of Z = X + Y is the
conv. of the p.d.f. of X and Y : fZ(z) =

R
R fX(t)fY (z � t) dt =R

R fX(z � t)fY (t) dt

N (x;µ,⌃) = 1p
(2⇡)d det(⌃)

exp
⇣
� 1

2 (x� µ)T⌃�1(x� µ)
⌘

N (x;µ,⌃�1) / exp
⇣

1
2 (x� µ)T⌃(x� µ)

⌘

µ̂ = 1
n

P
n

i=1 xi ⌃̂ = 1
n

P
n

i=1(x� µ̂)(x� µ̂)T

T.P
�⇥a1a2

⇤�
= N

⇣⇥a1a2

⇤ ���
⇥u1u2

⇤
,
h
⌃11 ⌃12
⌃21 ⌃22

i⌘

a1,u1 2 Re, ⌃11 2 Re⇥e p.s.d. ⌃12 2 Re⇥f p.s.d.
a2,u2 2 Rf , ⌃22 2 Rf⇥f p.s.d. ⌃21 2 Rf⇥e p.s.d.

P (a2 | a1 = z) = N
⇣
a2

���u2 + ⌃21⌃
�1
11 (z� u1),⌃22 �⌃21⌃

�1
11 ⌃12

⌘

T. (Chebyshev) Let X be a rv with E [X] = µ and variance
Var [X] = �2 <1. Then for any ✏ > 0, we have P (|X � µ| � ✏) 
�
2

✏2
.

2 Analysis

Log-Trick (Identity): r✓ [p✓(x)] = p✓(x)r✓ [log(p✓(x))]

T. (Cauchy-Schwarz)

8u,v 2 V : hu,vi  |hu,vi|  kuk kvk.
8u,v 2 V : 0  |hu,vi|  kuk kvk.
Special case: (

P
xiyi)

2  (
P

x2
i
)(
P

yi)
2

Special case: E [XY]2  E
⇥
X2⇤E

⇥
Y 2⇤

T. (Fundamental Theorem of Calculs)

f(y)� f(x) =
R
�[x,y]rf(⌧) · d⌧ =

R 1
t=0rf(�(t))T�0(t) dt

f(y)� f(x) =
R 1
0 rf((1� t)x + ty)T(y � x) dt

Com. Create a path � from x to y and integrate the dot product of
the gradient of the function-values at the path with the derivative
of the path.

D. (Saddle Points etc.)

T. (Jensen) f convex/concave, 8i : �i � 0,
P

n

i=1 �i = 1

f
�P

n

i=1 �ixi

�
 / �

P
n

i=1 �if (xi)

Special case: f(E [X])  E [f(X)].

D. (Lagrangian Formulation) of f(x, y) s.t. g(x, y) = c
L(x, y, �) = f(x, y)� �(g(x, y)� c)

3 Linear Algebra
T. (Sylvester Criterion) A d⇥ d matrix is positive semi-definite
if and only if all the upper left k⇥k for k = 1, . . . , d have a positive
determinant.
negative definite: det < 0 for all odd-sized minors, and det > 0 for
all even-sized minors
otherwise: indefinite.

D. (Trace) of A 2 Rn⇥n is Tr (A) =
P

n

i=1 aii.

4 Derivatives

What is correct???
4.1 Scalar-by-Vector

@

@x
[u(x)v(x)] = u(x) @v(x)

@x
+ v(x) @u(x)

@x

@

@x
[u(v(x))] = @u(v)

@v

@v(x)
@x

@

@x

h
f(x)Tg(x)

i
= @f(x)

@x
g(x) + @g(x)

@x
f(x) = Jfg(x) + Jgf(x)

@

@x

h
f(x)TAg(x)

i
= @f(x)

@x
Ag(x) + @g(x)

@x
ATf(x)

@

@x

h
aTx

i
= @

@x

h
xTa

i
= a

@

@x

h
xTx

i
= 2x

@

@x

h
bTAx

i
= ATb

@

@x

h
xTAx

i
= (A + AT)x

@

@x

h
aTf(x)

i
= @f

@x
a

@

@x

h
aTxxTb

i
= (abT + baT)x

@

@x

h
(Ax + b)TC(Dx + e)

i
= DTCT(Ax + b) + ATC(Dx + e)

@

@x

⇥
kf(x)k22

⇤
= @

@x

h
f(x)Tf(x)

i
= 2 @

@x
[f(x)] f(x) = 2Jf f(x)

4.2 Vector-by-Vector
A,C,D, a,b, e not a function of x,

f = f(x) , g = g(x) , h = h(x) , u = u(x) , v = v(x)

@

@x
[u(x)f(x)] = u(x) @f(x)

@x
+ f(x) @u(x)

@x

@

@x
[x� a] = diag(a)

@

@x
[a] = 0

@

@x
[x] = I

@

@x
[Ax] = A

@

@x

h
xTA

i
= AT

@

@x
[af(x)] = a @f(x)

@x
= aJf

@

@x
[Af(x)] = A @f(x)

@x

@

@x
[f(g(x))] = @f

@g

@g

@x
=

Jf (g)Jg(x)

@

@x
[f(g(h(x)))] = @f(g)

@g

@g(h)
@h

@h

@x

4.3 Scalar-by-Matrix

@

@X

h
aTXb

i
= abT

@

@X

h
aTXTb

i
= baT

@

@X

h
aTXa

i
= @

@X

h
aTXTa

i
=

aaT

@

@X

h
aTXTXb

i
= X(abT +baT)

@

@X
[Tr (X)] = I

@

@X
[Tr (AXB)] = ATBT

@

@X

h
Tr
⇣
AXTB

⌘i
= BA

4.4 Vector-by-Matrix (Generalized Gradient)
@

@X
[Xa] = XT

5 General Machine Learning

P (model ✓ | data D)
| {z }

Posterior

=

Likelihoodz }| {
P (data |model)⇥

Priorz }| {
P (model)

P (data)
| {z }
Evidence

6 Information Theory
D. (Entropy) Let X be a random variable distributed according
to p(X). Then the entropy of X

H(X) = �
P

x2X p(x) log (p(x)) = E [I(X)] = E [� log(P (X))] �
0.
describes the expected information content I(X) of X.

D. (Cross-Entropy) for the distributions p and q over a given set
is
H(p, q) = �

P
x2X p(x) log(q(x)) = Ex⇠p [� log(q(x))] � 0.

H(X; p, q) = H(X) + KL(p, q) � 0, where H uses p.

Com. The second formulation clearly shows why q := p is the
minimizer of the cross-entropy (or hence: the maximizer of the
likelihood).

Com. Usually, q is the approximation of the unknown p.

Relation to Log-Likelihood
In classification problems we want to estimate the probability of
di↵erent outcomes. If we have the following quantities:
· estimated probability of outcome i is qi. Now we want to tune q
in a way that the data gets the most likely. First, let’s just see
how good q is doing.

· the frequency (empirical probability) of outcome i in the data is
pi

· n data points
Then the likelihood of the data under pi is
Q

n

i=1 q
n·pi
i

since the model estimates event i with probability qi exactly n cot pi

times. Now the log-likelihood, divided by n is
1
n

P
n

i=1 npi log (qi) =
P

n

i=1 pi log (qi) = �H(p, q)

Hence, maximizing the log-likelihood corresponds to minimizing
the cross-entropy (which is why it’s used so often as a loss).

D. (Kullback-Leibler Divergence)

For discrete probability distributions p and q defined on the same
probability space, the KL-divergence between p and q is defined as

KL(p, q) = �
P

x2X p(x) log
⇣

q(x)
p(x)

⌘
=
P

x2X p(x) log
⇣

p(x)
q(x)

⌘
�

0.

KL(p, q) = �Ex⇠p

h
log
⇣

q(x)
p(x)

⌘i
= Ex⇠p

h
log
⇣

p(x)
q(x)

⌘i
� 0.

KL(X; p, q) = H(p, q)�H(X), where H uses p.

The KL-divergence is defined only if 8x : q(x) = 0 =) p(x) = 0
(absolute continuity). Whenever p(x) is zero the contribution of
the corresponding term is interpreted as zero because

lim
x!0+ x log(x) = 0.

In ML it is a measure of the amount of information lost, when q
(model) is used to approximate p (true).

Com. KL(p, y) = 0() p ⌘ q.

Com. Note that the KL-divergence is not symmetric!

D. (Jensen-Shannon Divergence)

JSD(P,Q) = 1
2KL(P,M) + 1

2KL(Q,M) 2 [0, log(n)?] M =
1
2 (P + Q)

C.The JSD is symmetric!
Com. The JSD is a symmetrized and smoothed version of the
KL-divergence.

7 NN Functions and their Derivatives
D. (Hard Tan)

HardTanh: Rn ! Rn

z = HardTanh(x) = x� 1{x2[�1,1]} + 1{x>1} � 1{x<�1}

z0 = HardTanh0(x) = diag(1{x2[�1,1]})

D. (Max Layer)

max: Rn ! R
z = max(x)

z0 = max0(x) = diag(ei), where i = argmax
i
(xi)

D. (Softmax)

Now here the output of each activation ? depends on every input,
thus the jacobian is not just a diagonal matrix.

softmax(x)i = e
xiP

c

i=1 exc

@ softmax(x)i
@xj

=

⇢
� softmax(x)i softmax(x)j , i 6= j
softmax(x)i � softmax(x)i softmax(x)j i = j

rx softmax(x) = Jsoftmax(x) = diag(softmax(x))� softmax(x) softmax(x)T

8 Taylor Approximations
T. (Taylor-Lagrange Formula)

f(x) =
P

n

k=0
f
(k)(x0)

k! (x� xo)
k +

R
x

x0

f
(n+1)(x�t)

n! dt

D. (m-th Taylor Polynomial for f at a)

Pa

m
(x) =

mX

k=0

1

k!
f(k)(a)(x� a)k

D. (Error of m-th Taylor Polynomial for f at a)

Ra

m
(x) := f(x)� Pa

m
(x) () f(x) = Pa

m
(x)

| {z }
approx.

+Ra

m
(x)

| {z }
error

T. (Approximation Quality of Taylor Polynomials) Let f 2
Cm([a, b]) and let f be (m + 1)-times di↵erentiable. Then

9⇠ 2 [a, b] : f(x) = Pa

m
(x) +

1

(m + 1)!
f(m+1)(⇠)(x� a)m+1

| {z }
Ra

m
(x)=

Hence, Ra

m
(x) 2 O(✏m+1) where ✏ := x� a.

✏ := xnew � x approximation at x, interpolation to xnew

Finite di↵erence method to approximate gradient

f(x+✏) ⇡ f(x)+✏rf(x)+O(✏2)() rf(x) = f(x+✏)�f(x)
✏

+O(✏2)

Symmetrical central di↵erences reduces error

f(x + ✏) ⇡ f(x) + ✏Trf(x) + 1
2 ✏

THess(f)(x)✏+ O(✏3)

f(x� ✏) ⇡ f(x)� ✏Trf(x) + 1
2 ✏

THess(f)(x)✏+ O(✏3)

rf(x) ⇡ f(x+✏)�f(x�✏)
2✏ + O(✏3)

2nd-Order Taylor expanion at x0 (function for x, we want to ex-
trapolate to f(x))

f(x) ⇡ f(x0) + (x� x0)rxf(x0) + (x� x0)
THess(f)(x0)(x� x0)

9 Newton’s Method

xt+1 = xt �Hess(f)(xt)�1rxf(x
t).

10 Approximation Theory

10.1 Compositional Models

Want to learn: F⇤ : Rn ! Rm, Learning: Now we reduce this
task to learning a function F in some parameter space Rd that
approximates F⇤ well.

F : Rn ⇥ Rd ! Rm, F := {F (· , ✓)} ✓ 2 Rd

DL: the composition of simple functions can give rise to very com-
plex functions.

F : Rn
G1��! R⇤ G2��! R⇤ G3��! · · ·

GL��! Rm

F = GL � · · · �G2 �G1

F (x, ✓) = GL(· · ·G2(G1(x; ✓1); ✓2); · · · ; ✓L).

10.2 Compositions of Maps

D. (Linear Function) A function f : Rn ! Rm is a linear func-
tion if the following properties hold

· 8x,x0 2 Rn : f(x + x0) = f(x) + f(x0)
· 8x 2 R 8↵ 2 R : f(↵x) = ↵f(x)

T.f : Rn ! R is linear () f(x) = wTx for some w 2 Rn

D. (Hyperplane)

H := {x | hw,x� pi = 0} = {x | hw,xi = b}
where b = hw,pi. w =normal vector, p points onto a point on the
plane.

D. (Level Sets) of a function f : Rn ! R is a one-parametric
family of sets defined as

Lf (c) := {x | f(x) = c} = f�1(c) ✓ Rn.

T.The level sets of an a�ne function f(x) = w>x + b are a�ne
subspaces ↵w + V,↵ 2 R, V = {x : w>x = 0}.
C.Lf (c) = (x�b)w

w>w
+ {x : w>w = 0}.

T. (Comp. of Lin. Maps/- is a Lin. Map/Unit)

Let F1, . . . , FL be linear maps, then F = FL � · · · � F2 � F1 is also
a linear map.

C.Every L-layer NN of linear layer collapses to a 1-layer NN. Fur-
ther note that hereby

rank(F) ⌘ dim(im(F))  mini2{1,...,L} rank(Fi).

So this strongly suggests, that we need to move beyond linearity
and use generalizations of linear maps (e.g., p.w. linear functions,
or ridge functions).

10.3 Universal Approximation with Ridge Func-
tions

D. (Ridge Function) f : Rn ! R is a ridge function, if it can be

written as f(x) = �(wTx + b) = � � f for some � : R! R, w 2 Rn,
b 2 R.
· f(x) = wTx + b, where f : Rn ! R (a�ne part)
· Lf (c) =

S
d2��1(c) Lf

(d) =
S

d2L�(c) Lf
(d)

· if � is di↵erentiable at z = wTx + b then
rxf(x) = �0(z)rxf(x) = �0(z)w = �0(wTx + b)w

· a ridge function picks out one direction of change (linear part),
and then models the rate of change in that chosen direction via
�

T.The level sets of ridge functions f = � � f are unions of a�ne
subspaces, specifically

Lf (c) =
[

d : �(d)=c

L
f
(d).

C. If � is one-to-one with inverse ��1 then

Lf (c) = L
f
(��1(c))

and the level sets of f and f are in one-to-one correspondence.

T.Let f : Rn ! R be a ridge function, di↵erentiable at x. Then
either rf(x) = 0 or rf(x) ? Lf (f(x)).

T.Let f : Rn ! R be di↵erentiable at x. Then either rxf(x) = 0,
or rxf(x) ? Lf (f(x))

D. (Universe of Ridge Functions for some � : R! R)
Gn

�
:=
n
g
��� g(x) = �(wTx + b), w 2 Rn, b 2 R, � : R! R

o

D. (Universe of Continuous Ridge Functions)

Gn :=
S

�2C(R) G
n

�
.

T.Composition of continuous functions is continuous.

T.(Hence) Gn ✓ C(Rn).

D. (Span of Universe of Continuous Ridge Functions)

Hn := span(Gn) =
n
h
��� h =

P
r

j=1 gj , gj 2 Gn

o
.

D. (Dense Function Class H in C(Rd))

A function class H ✓ C(Rd) is dense in C(Rd), i↵

8f 2 C(Rd) 8✏ > 0 8K ⇢ Rd, K compact

9h 2 H : max
x2K

|f(x)� h(x)| = kf � hk1,K
< ✏.

L.MLPs with one hidden layer and a polynomial activation function
are not universal function approximators.

L. (Dimension Lifting)

H1
�

dense in C(R) =) 8n � 1: Hn

�
dense in C(Rn)

Com. So we can lift the density property of ridge functions from
C(R) to C(Rn).

Summary

s � 2 C1(R),
� not polynomial

Approx. Thm.
=) H1

�
is dense in C(R) Dim. Lifting

=) 8n : Hn

�
is dense in C(Rn)

10.4 Sigmoid Networks

D. (Sigmoid Activation Function)

�(x) := 1
1+e�x

2 (0; 1)

��1(y) = ln
⇣

y

1�y

⌘

�0(x) := �(x) · (1� �(x))
rx�(x) = J�(x) = diag(�(x)� (1� �(x)))
�0(x) = 1

4 tanh0(1
2x) = 1

4 (1� tanh2(1
2x))

T.�(�x) = 1� �(x)
D. (Tanh Activation Function)

tanh(x) = e
x�e

�x

ex+e�x
2 (�1; 1)

tanh0(x) = 1� tanh2(x)

rx tanh(x) = Jtanh(x) = I� diag(tanh2(x))

tanh0(x) = 4�0(2x) = 4�(2x)(1� �(2x))
Connection between Sigmoid and Tanh (Equal Representation
Strength)

�(x) = 1
2 tanh

�
1
2x
�
+ 1

2 () tanh(x) = 2�(2x)� 1

tanh(x) =
ex � e�x

ex + e�x
=

ex

ex + e�x
·
e�x

e�x
�

e�x

ex + e�x
·
ex

ex

=
1

1 + e�2x
�

1

1 + e2x
= �(2x)�

1 + e2x � e2x

1 + e2x

= �(2x)�
1 + e2x

1 + e2x
+

e2x

1 + e2x
·
e�2x

e�2x
= �(2x)� 1 +

1

1 + e�2x

= 2�(2x)� 1.

10.5 Rectification Networks
D. (Rectified Linear Unit (ReLU))

(x)+ := max(0, x) = ReLU(x) 2 [0,1]

(x)0+ := 1{x>0}

rx(x)+ = J(·)+ (x) := diag(1{x>0})

@(z)+| {z }
subdiff.

=

(
{1} , x > 0,
{0} , x < 0,
[0; 1], x = 0.

· a linear function over a half-space H,
· and zero on the complement Hc = Rn �H.
· non-smooth

D. (Absolute Value (Rectification) Unit (AVU))

|z| :=
n
z, z � 0
�z, z < 0. @ |z| =

(
1, x > 0,
[�1; 1], x = 0,
�1, x < 0.

Relationship between ReLU and AVU

(x)+ =
x + |x|

2
, |x| = (x)+ + (�x)+ = 2(x)+ � x

T.Any f 2 C([0; 1]) can be uniformly approximated to arbitrary
precision by a polygonal line (c.f. Shektman, 1982). Or in other
words:
H = {p.w. linear functions} is dense in C([0, 1]).

T.Lebesgue showed how a polygonal line with m pieces can be
written

g(x) = ax + b +
m�1X

i=1

ck(x� xi)+ (ReLU function approx.)

· Knots: 0 = x0 < x1 < · · · < xm�1 < xm = 1
· m + 1 parameters: a, b, c1, . . . , cm�1
.
With the dimension lifting theorem we can lift this property from
1D to nD.
Note that there’s an alternative representation of the above through
AVUs
g(x) = a0x + b0 +

P
m

i=1�1c
0
i
|x� xi|

.
T.Networks with one hidden layer of ReLUs or absolute value units
(AVU)s are universal function approximators.

Com. We can thus use a restricted set of activation functions
(ReLUs or AVUs). But still we don’t know how many hidden units
we need.
Proof. (Sketch)

1. Universally approximate C(K) functions (K, compact) by polyg-
onal lines

2. Represent polygonal lines by (linear function +) linear combina-
tions of (·)+ or | · |-functions

3. Apply dimension lifting lemma to show density of the linear span
of resulting ridge function families Gn

(·)+
and Gn

| · |.

10.5.1 Piecewise Linear Functions and Half Spaces
So the ReLU and the AVU define a piecewise linear function with
2 pieces. Hereby, Rn is partitioned into two open half spaces (and
a border face):

· H+ :=
n
x
��� wTx + b > 0

o
⇢ Rn

· H� :=
n
x
��� wTx + b < 0

o
⇢ Rn

· H0 :=
n
x
��� wTx + b = 0

o
= Rn �H+ �H� ⇢ Rn

Further note that
· g(·)+ (H0) = g| · |(H

0) = 0

· g(·)+ (H�) = 0

· g| · |(x) = g| · |(v � x) with v = �2b w

kwk22
(mirroring at w:

equivalent to subtracting the projection of x onto w twice from
x)

Partitions of ReLUs go to infinity, even if we have no examples there
! weak to extrapolation errors (adversarial examples). However, if
you have enough data, then you can overcome this, because there
won’t be any new examples that lie outside of the training data
regions.

10.5.2 Linear Combinations of ReLUs
T. (Zaslavsky, 1975) By linearly combining m rectified units
Rn can be partitioned at most into R(m) cells: R(m) 
Pmin{m,n}

i=0

�
m

i

�

C. If classes m  n we have R(m) = 2m (exponential growth).

C.For any input size n we have R(m) 2 O(mn) (polynomial slow-
down in number of cells, limited by the input space dimension).

10.5.3 Deep Combination of ReLUs
Question: Process n inputs through L ReLU layers with widths
m1, . . . ,mL 2 O(m). Into how many (= R(m,L)) cells can Rn be
maximally partitioned?

T. (Montufar et al, 2014) If we process n-dim. inputs through
L ReLU layers with widths m1, . . . ,mL 2 O(m).Then Rn can be
partitioned into at most R(m,L) layers:

R(m,L) 2 O
⇣�

m

n

�
n(L�1) mn

⌘

Com. So for a fixed n the exponential growth (that may be lost
if classes m > n input dim, and we use one hidden layer) of the
number of partitions can be recuperated by increasing the number
of layers. Further, by adding layers, one may reduce the total
number of hidden units in total (! less params)

10.5.4 Hinging Hyperplanes

D. (Hinge Function (extension of ReLU))

If g : Rn ! R can be written with parameters w1,w2 2 Rn and
b1, b2 2 R as below it is called a hinge function

g(x) = max
⇣
wT

1x + b1,w
T
2x + b2

⌘

· two hyperplanes, “glued” together at their intersection. So for
the intersection it holds that: wT

1x + b1 = wT
2x + b2.

· Representational power: 2max(f, g) = f + g + |f � g| .
The good thing is that these hyperplanes (as opposed to the ReLU)
don’t interact only in one dimension (w), but they interact in two
dimensions w1,w2.

T.Given a continuous p.w. linear function in Rn, we can represent
the function as

wT
1x + b1 ±

���wT
2x + b2

��� ±
���wT

3x + b3 +
���wT

4x + b4
���
��� ±

���wT
5x + b5 +

���wT
6x + b6 +

���wT
7x + b7

���
���
���± · · ·

So for a continuous p.w. linear function in Rn we need n nested
(as above) absolute value functions (! n layers with AVUs needed
(same as data dimensionality!)

Com. So, every ±-term has one more nesting.

D. (k-Hinge Function) g(x) = max(wT
1x + b1, . . . ,w

T
k
x + bk).

T. (Wang and Sun, 2005) Every continuous p.w. linear func-
tion from Rn ! R can be written as a signed sum of k-Hinges with
ki  dlog2(n + 1)e. So f(x) =

P
i
✓igi(x) where ✓i 2 {±1}.

Com. This reduces the growth of absolute value nesting to loga-
rithmic growth, instead of linear growth.

C.P.w. linear functions are dense in C(Rn).

10.5.5 Maxout Networks
In 2013 k-Hinges were re-discovered under the name of Maxout by
Goodfellow et al.

D. (Maxout) is just the max non-linearity applied to k groups of
linear functions. So the input [1 : d] (of the previous layer) is parti-

tioned into k sets A1, . . . , Ak, and then we define the activations
Gj(x) for j 2 {1, . . . , k} as

Gj(x) = maxi2Aj

n
wT

i
x + bi

o
(i 2 {1, . . . , d})

Com. So, here we apply the nonlinearity in Rd (among some set
members Aj) instead applying the nonlinearity in R (as with ridge
functions).

T. (Goodfellow, 2013) Maxout networks with two maxout units
that are applied to 2m linear functions are universal function ap-
proximators.

Proof. (Sketch)

1. Wang’s theorem: Linear network with two maxout units and a
linear output unit (subtraction) can represent any continous p.w.
linear function (exactly!)

2. continous p.w. linear function are dense in C(Rn)

11 Feedforward Networks
D. (Feedforward Network) set of computational units arranged
in a DAGn (layer-wise processing)

F = FL � · · · � F 1

where each layer l 2 {1, . . . , L} is a composition of the following
functions

F l : Rm
l�1 ! Rm

l F l = �l � F l

where F
l
: Rm

l�1 ! Rm
l is the linear function in layer l

F
l
(hl�1) = Wlhl�1 + b, Wl 2 Rm

l
⇥m

l�1 , b 2 Rm
l

and �l : Rm
l ! Rm

l element-wise non-linearity at layer l.

Note that h0 := x.

D. (Hidden Layer) A layer that is neither the input, nor the
output layer is called a hidden layer.

So a feedforward neural network represents a family of functions

F .
The functions F✓ 2 F are parametrized by parameters ✓, ✓ =

S
L

l=1

n
Wl,bl

o
.

Probability Distribution Perspective
It is often useful to view the output of a FF network as the param-
eters µ of some distribution over Y.

F✓ : Rn ! Rm ! P(Y)

x
learned7! µ

fixed7! P (y |x;F✓) = P (y |µ = F✓(x)) y ⇠ P (y;µ)

11.1 Output Units and Objectives
Now, how can we find the most appropriate function in F based
on training data {(x1,y1), . . . , (xN ,yN)}? There are basically two
options (both leading to similar loss functions):

· Decision theory (min. some risk, max. some payo↵, . . .)
· Maximum Likelihood (max. likelihood, min. prob. dens. dist.,
. . .)

11.1.1 Decision Theory

In decision theory, we strive to minimize the expected risk (defined
through a loss function `) of a function F .

D. (Expected Risk of a Function F)

F⇤ = argmin
F

P
y2Y

R
X `(y, F (x))p(x, y) dx =

argmin
F

EX,Y [`(Y, F (X))]
| {z }

R⇤(F) expected risk of F

However, we do not know `, we aren’t given p(x, y) (only samples).

D. (Loss Function)

` : Y ⇥ Y ! R�0 (y⇤
|{z}
true

, y|{z}
pred.

) 7! `(y⇤,y)

s.t. 8y 2 Y : `(y,y) = 0 and 8y⇤,y 2 Y,y 6= y⇤ : `(y⇤,y) > 0..

D. (Training Risk / Empirical Risk)

SN :=
n
(xi, yi)

i.i.d.⇠ p
��� i = 1, . . . , N

o
.

R(F ;SN) = 1
N

P
N

i=1 `(yi, F (xi))

So the training risk is the expected risk under the empirical distri-
bution induced by the sample SN .

D. (Empirical Risk Minimization)

F = {F✓ | ✓ 2 ⇥} (e.g. neural network)

F̂ (SN) = argmin
F2F R(F ;SN)

11.1.2 Why Regularization is Needed

Wish: R(F̂ ;Sn)
n!1! R⇤(F⇤) (no overfitting)

So as n grows we’d want to do as good as if we knew p(x,y).

Law of large numbers guarantees: R(F ;Sn)
n!1! R⇤(F) but this

doesn’t help us to move from some F ! F⇤.

In order to ultimately get from F̂ to F⇤, which minimizes R⇤(F⇤),

we need to restrict F such that R(F̂ ;Sn)
n!1! R⇤(F⇤). This will

prevent overfitting. However it’s not so easy to determine how to
constrain F such that F̂ ! F⇤.

D. (Regularized Empirical Risk)

Rr(F ;Sn) := R(F ;Sn) + �⌦(kFk)
11.1.3 Regularization Approaches

Weight decay, data augmentation, noise robustness (to weights,
inputs, labels (compensates for errors in labeling of data)), semi-
supervised learning, dropout, early stopping (prevent overfitting
through long training), multi-task learning (to learn general repre-
sentation or use more data), parameter sharing (CNNs), ensembles
(reduces variance, same bias, costly)

Some regularization methods can be proven to be equivalent. How-
ever: only in the limit. Thus, it’s good to use combinations of them
in finite horizons.

12 Backpropagation

Learning in neural networks is about gradient-based optimization

(with very few exceptions). So what we’ll do is compute the gradient
of the objective (empirical risk) with regards to the parameters ✓:

r✓R =
⇣

@R
@✓1

· · · @R
@✓

d

⌘T
.

12.1 Comp. of Gradient via Backpropagation
A good way to compute r✓R is by exploiting the computational
structure of the network through the so-called backpropagation.
The basic steps of backpropagation are as follows:

1. Forward-Pass: Perform a forward pass (for a given training input
x), compute all the activations for all units

2. Compute the gradient of R w.r.t. the ouput layer activations (for
a given target y) (even though we’re not interested directly in
these gradients, they’ll simplify the computations of the gradients
in step 4.)

3. Iteratively propagate the activation gradient information from
the outputs of the previous layer to the inputs of the current
layer.

4. Compute the local gradients of the activations w.r.t. the weights
and biases

Since NNs are based on the composition of functions we’ll inevite-
ably need the chain rule.

T. (1-D Chain Rule) y = f(g(x)
|{z}

z

)

(f � g)0 = (f 0 � g) · g0 d(f�g)
dx

���
x=x0

= df

dz

���
z=g(x0)

· dg

dx

���
x=x0

D. (Jacobi Matrix of a Map)

The Jacobian JF of a map F : Rn ! Rm is defined as

JF :=

0

BBB@

(rF1)
T

(rF2)
T

.

.

.
(rFm)T

1

CCCA
=

0

BBBBB@

@F1
@x1

@F1
@x2

· · · @F1
@xn

@F2
@x1

@F2
@x2

· · · @F2
@xn

.

.

.
.
.
.

. . .
.
.
.

@Fm

@x1

@Fm

@x2
· · · @Fm

@xn

1

CCCCCA
2 Rm⇥n

So each component function Fi : Rn ! R of F , for i 2 {1, . . . ,m}
has a respective gradient. Putting these gradients together as rows
of a matrix gives us the Jacobian of F .
So we have that

(JF)
ij

=
@Fi

@xj

.

T. (Jacobi Matrix Chain Rule)

G : Rn ! Rq H : Rq ! Rm

F := H �G

F : Rn G! Rq H! Rm

x
G7! z := G(x)

H7! y := H(z) = H(G(x))

Chain-rule for a single component-function Fi : Rn ! R of F :

@Fi

@xj

����
x=x0

=
@(H �G)i

@xj

����
x=x0

=
qX

k=1

@Hi

@zk

����
z=G(x0)

·
@Gk

@xj

����
x=x0

.

This gives us the following lemma for Jacobi matrices of composi-
tions of functions

L. (Jacobi Matrix Chain Rule)

JF |
x=x0

= JH�G|
x=x0

= JH |
z=G(x0) · JG|

x=x0

Proof. This just follows from the upper relationship

(JH�G)ij |x=x0
=

@(H �G)i

@xj

����
x=x0

=
qX

k=1

@Hi

@zk

����
z=G(x0)

·
@Gk

@xj

����
x=x0

= (JH)i,:|z=G(x0) (JG):,j |x=x0

= (rzHi)
T
���
z=G(x0)

(JG):,j |x=x0

Special Case: Function Composition
Let’s have a look at the special case where we compose a map with
a function

G : Rn ! Rm, h : Rm ! R, h �G : Rn ! R
And let’s use the more intuitive variable notation

x
G7! y

h7! z

Then we have that

rxz =
mX

k=1

@z

@yk

· @yk

@x
= (JG)Tryz

Important Notation
Note that we have a lot of indicies. Always use the following
convention:
· index of a layer: put as a superscript

· index of a dimension of a vector: put as a subscript

· futher we use the following shorthand for layer activations

xl := (F l � · · · � F 1)(x) 2 Rm
l

xl

i
2 R : activation of i-th unit in layer l

· the index of a data point (i.e., the index of one of the N sam-
ples), is omitted where possible, but if we really need to we’ll use
rectangular brackets (to not confuse it with the vector indices).
So,

(x[i],y[i]) is the i-th sample point.

Note that in the following we’ll be taking gradients w.r.t. one
datapoint (just in order to not get another index in this mess). So,
one data sample (x,y). If we wanted to take the gradient w.r.t.
some larger batch, then the resulting gradient would just be the
average of the gradients for each sample datapoint in the batch.

Deep Function Compositions

F✓ : X = Rn ! Rm = Y
F✓ = FL

✓
� · · · � F 1

✓

R : (X
F
✓! Y)

| {z }
we’re interested in
the predictions that

result from choosing ✓

⇥ (X ⇥ Y)
| {z }

evaluation set S
(induces emp. dist.)

⇥ (Y ⇥ Y ! R�0)| {z }
loss `

! R�0

x =: x0 F
1
✓7! x1 F

2
✓7! x2 F

3
✓7! · · ·

F
L

✓7! xL =: y
R7! R(F✓;

�
x,y⇤) 2 R�0

xl = �l

⇣
Wlxl�1 + bl

⌘

el = r
xlR

el = r
xlR = @R

@xl
=
Pm

l+1
k=1

@R
@xl+1

k| {z }
e
l+1
k

· @xl+1
k

@xl

| {z }
(JT

Fl+1
):,k

= JT
Fl+1e

l+1
k

.

e0 = JT

F1 · JT

F2 · · ·JT

FL�1 · · ·JT

FL
eL

Backpropagation just gives us another network in the reversed

direction. eL

J
T
FL

7! eL�1
J
T
FL�1
7! · · · el+1

J
T
Fl+1
7! el 7! · · ·

J
T
F1
7! e0.

Algorithm 1: Activity Backpropagation

eL ryR|
y
= 1

N

P
(x,y⇤)2SN

ry`(y = F✓(x),y
⇤)|

y

for l (L� 1) (down) to 0 do
el JT

Fl+1e
l+1
k

Jacobians of Ridge Functions

xl = F l(xl�1) = �l

⇣
Wlxl�1 + bl

⌘
= �l(zl).

zl = Wlxl�1 + bl

@x
l

i

@x
l�1
j

= �0(zl

i
) · @z

l

i

@x
l�1
j

= �0(zl

i
) · wl

ij

J
Fl =

0

B@�0(zl) �0(zl) · · · �0(zl)

1

CA�Wl = diag(�0(zt))Wt

Sidenote: if � =ReLU, then �0(z) 2 {0, 1} which makes J
Fl a

sparsified version of Wl (0-rows, or just the rows of Wl).

Now we’ll se how we can get from the gradients w.r.t. the activa-
tions to the gradients w.r.t. the weights. Actually, that is very easy
- we just need to apply the chain rule one more time locally:
Just draw a picture of the network graph if you need to understand
it better.

@R
@w

l

ij

=
@R
@xl

i|{z}
=e

l

i

@x
l

i

@w
l

ij

= el
i

@xl

i

@zl

i|{z}
=�0(zl

i
)

@zl

i

@wl

ij| {z }
=x

l�1
j

= el
i
�0(zl

i
)xl�1

j

@R
@b

l

i

=
@R
@xl

i|{z}
=e

l

i

@x
l

i

@b
l

i

= el
i

@xl

i

@zl

i|{z}
=�0(zl

i
)

@zl

i

@bl
i|{z}

=1

= el
i
�0(zl

i
).

Note that in a way, the size of the gradient depends on the error
that we have times the strength of the network’s output at some
node.

12.2 Backpropagation Graphs
The approach a backpropagation graph for a loss L from a FF
network graph is as follows:

1. (RED) Starting at the loss L backward: for each node n and for
each of its outputs o which has a path to the loss, add the node
@o

@n
(at the height of node n). Connect the output o and that

node n to that newly created node.
2. (BROWN) Starting at the loss backward: for each node n create

a node @L

@n
(if it doesn’t exist already) and connect each previ-

ously created partial node (@o

@n
) to it, and the previously crated

(in this step) @L

@o
’s too.

Ex. (SEP2.3) Consider a recurrent neural network with inputs
x1:T , hidden states h1:T and outputs y1:T . Given:

yt = G(ht;), ht = �(h), ht = F (xt, ht�1; ✓)

LT := L(yT) +
�

2
k✓k22

Solution:

@LT

@✓
=
@L(yT)

@✓
+ �✓ =

@L

@yT

@yT

@hT

@hT

@✓
+ �✓

=
@L

@yT

@yT

@hT

TX

t=1

@hT

@ht

@ht

@✓
+ �✓

=
@L

@yT

@yT

@hT

TX

t=1

0

@
TY

k=t+1

@hk

@hk�1

1

A @ht

@✓
+ �✓

=
@L

@yT

@yT

@hT

TX

t=1

0

@
TY

k=t+1

@hk

@hk

@hk

@hk�1

1

A @ht

@ht

@ht

@✓
+ �✓

13 Convolutional Neural Networks

13.1 Convolutional Layers

D. (Transform (aka Operator)) A transform T is just a map-
ping from one function space F (or a cross product of it) to another
function space F 0. So T : F ! F 0.

D. (Linear Transform (/Operator)) A transform T is linear, if
for all functions f, g and scalars ↵, �, T (↵f +�g) = ↵(Tf)+�(Tg).

D. (Integral Transform (/Operator)) An integral transform

is any transform T of the following form

(Tf)(u) =

t2Z

t1

K(t, u)f(t) dt.

The input of this transform is a function f of t, and the output is
another function Tf in terms of some other variable u.
Note that the integral boundaries, the class of input function f ,
and the kernel K must be defined such that Tf exists for any f in
order for T to be an integral operator.
There are numerous useful integral transforms. Each is specified by
a choice of the function K in two variables, the kernel function,
integral kernel, or nucleus of the transform.

Some kernels have an associated inverse kernel K�1(u, t), which
(roughly speaking) yields an inverse transform:

f(t) =

u2Z

u1

K�1(u, t)(Tf)(u) du.

T.Any integral transform is a linear transform.
C.The expectation operator is a linear operator.
Proof. Trivially follows from the linearity of the integral.

D. (Symmetric Kernel) A symmetric kernel K is one that is un-
changed when the two variables are permuted. So, K is symmetric,
if K(t, u) = K(u, t).

Mathematical motivation: some problems are easier to solve if
transformed and solved in another domain (and then possibly the
solution is transformed back).

DL motivation: we’ll learn the kernels.

D. (Convolution) Given two functions f, h : R! R, their convo-
lution is defined as

(f ⇤ h)(u) :=

1Z

�1

h(t)f(u� t) dt =

1Z

�1

h(u� t)f(t) dt

Com. Whether the convolution exists depends on the properties
of f and h (the integral might diverge). However, a typical use is
f = signal, and h = fast decaying kernel function.

T. (Every Conv. can be Written as an Integral Transf.)

Now, a convolution of f with some function h can be seen as an
integral operator with a kernel

K(u, t) = h(u� t).

Note that we can say the anologous thing for the convolution of h
with f . The definition of the convolution shows us directly that it’s
commutative!
L.The convolution T (·) = (· ⇤ g) is a linear transform (with
K(u, t) = g(u� t)).

Proof. Trivially follows from the fact that we can express every
convolution as an integral transform.

T. (Convolution Properties)

· Associativity (f ⇤ g) ⇤ h = f ⇤ (g ⇤ h)
· Commutativity f ⇤ g = g ⇤ f
· Bilinearity (↵f + �g) ⇤ (�y + �z) = ↵�(f ⇤ y) + ↵�(f ⇤ z) + · · ·
(follows from commutativity and linearity)

D. (Translation- (or Shift-) Invariant) A transform T is trans-
lation (or shift) invariant, if for any f and scalar ⌧ ,

f⌧ (t) := f(t� ⌧) (Def. shift operator s⌧)

(Tf⌧)(t) = (Tf)(t� ⌧). (commuting of operators holds)

So, an operator T is shift-invariant i↵ it commutes with the shift
operator s�.

8f : (T (s�f)) = (s�(Tf)).

So, the commutative diagram for this is:

f s�f = f�

Tf s�(Tf) = T (f�)

s�

T T

s�

T. (Convolution is Translation- (or Shift-) Invariant)

Proof. ⌧(s,t)((f ⇤ g)(u, v)) = (⌧(s,t)(f) ⇤ g)(u, v) = (f ⇤
⌧(s,t)(g))(u, v)

⌧(s,t)((f ⇤ g)(u, v)) = ⌧(s,t)

0

@

0

@
pX

i=�p

qX

j=�q

f(u� i, v � j)g(i, j)

1

A (u, v)

1

A

=
pX

i=�p

qX

j=�q

f(u + s� i, v + t� j)g(i, j)

=
pX

i=�p

qX

j=�q

⌧(s,t)(f(u� i, v � j))g(i, j)

= (⌧(s,t)(f) ⇤ g)(u, v)

⇤
So, to summarize a convolution is a linear shift-invariant integral

transform.

T. (Convolution Theorem) Any linear, translation-invariant
transformation T can be written as a convolution with a suitable
h.
Proof.
Let ! represent the input-output relationship of a linear system.

By definition �(t)! h(t)

Using linearity we have a�(t)! ah(t)

Let a = x(t0) then x(t0)�(t)! x(t0)h(t)

By shift invariance we have �(t� t0)! h(t� t0)

Combining linearity and shift invariance x(t0)�(t� t0)! x(t0)h(t�
t0)

Again by linearity, we can sum many terms of this kind.R1
�1 x(t0)�(t� t0) dt0 !

R1
�1 x(t0)h(t� t0) dt0

But by definition of �(t) we have that the LHS is x(t), so

x(t)!
R1
�1 x(t0)h(t� t0) dt0

By a change of variable on the RHS to t̃ = t� t0 we also have

x(t)!
R1
�1 x(t� t0)h(t0) dt0 = y(t) ⇤

1
3
.2

D
iscrete

T
im

e
C
o
n
v
o
lu
tio

n
s

1
4

O
P
T
IM

IZ
A
T
IO

N

13.2 Discrete Time Convolutions
D. (Discrete Convolution)

For f, h : Z! R, we can define the discrete convolution via

(f ⇤ h)[u] :=
1X

t=�1
f [t]h[u� t] =

1X

t=�1
f [u� t]h[t]

Com. Note that the use of rectangular brackets suggests that we’re
using “arrays” (discrete-time samples).

Com. Typically we use a h with finite support (windows size).

D. (Multidimensional Discrete Convolution)

For f, h : Rd ! R we have

(f ⇤ h)[u1, . . . , ud] =
1X

t1=�1
· · ·

1X

t
d
=�1

f(t1, . . . , td)h(u1 � t1, . . . , ud � td)

=
1X

t1=�1
· · ·

1X

t
d
=�1

f(u1 � t1, . . . , ud � td)h(t1, . . . , td)

D. (Discrete Cross-Correlation)

Let f, h : Z! R, then

(h ? f)[u] :=
1X

t=�1
h[t]f [u + t] =

1X

t=�1
h[�t]f [u� t]

= (h ⇤ f)[u] = (f ⇤ h)[u] where h(t) = h(�t).

aka “sliding inner product”, non-commutative, kernel “flipped over”
(u + t instead of u � t). If kernel symmetric: cross-correlation =
convolution.

13.3 Convolution via Matrices
Represent the input signal, the kernel and the output as vectors.
Copy the kernel as columns into the matrix ofsetting it by one more
very time (gives a band matrix (special case of Toeplitz matrix)).
Then the convolution is just a matrix-vector product.

13.4 Why to use Convolutions in DL
Transforms in NNs are usually: linear transform + nonlinearity.
(given in convolution).

Many signals obey translation invariance, so we’d like to have trans-
lation invariant feature mpas. If the relationship of translation
invariance is given in the input-output relation then this is perfect.

13.5 Border Handling
There are di↵erent options to do this

· D. (Padding of p) Means we extend the image (or each dimen-
sion) by p on both sides (so +2p) and just fill in a constant there
(e.g., zero).

· D. (Same Padding) our definition: padding with zeros = same

padding (“same” constant, i.e., 0, and we’ll get a tensor of the
“same” dimensions)

· D. (Valid Padding) only retain values from windows that are
fully-contained within the support of the signal f (see 2D exam-
ple below) = valid padding

13.6 Backpropagation for Convolutions
Exploits structural sparseness.

D. (Receptive Field Il

i
of xl

i
)

The receptive field Il

i
of node xl

i
is defined as Il

i
:=
n
j
��� W l

ij
6= 0
o

where Wl is the Toeplitz matrix of the convolution at layer l.

Com. Hence, the receptive field of a node xl

i
are just nodes the

which are connected to it and have a non-zero weight.
Com. One may extend the definition of the receptive field over
several layers. The further we go back in layer, the bigger the re-
ceptive field becomes due to the nested convolutions. The receptive
field may be even the entire image after a few layers. Hence, the
convolutions have to be small.

Obviously, we have 8j 6= Il

i
:

@x
l

i

@x
l�1
j

= 0, simply because

· a node xl�1
j

may not be connected to xl

i
,

· or a node xl�1
j

may be connected to xl

i
through an edge with

zero weight, so Wij = 0 - hence, tweaking xl�1
j

has no e↵ect on

xl

i
.

So due to the weight-sharing, the kernel weight hl

j
is re-used for

every unit in the target layer at layer l, so when computing the
derivative @R

@h
l

j

we just build an additive combination of all the

derivatives (note that some of them might be zero).

@R
@hl

j

=

m
lX

i=1

@R
@xl

i

@xl

i

@hl

j

Backpropagations of Convolutions as Convolutions

y(l) output of l-th layer

y(l�1) output of (l� 1)-th layer / input to l-th layer

w convolution filter
@R

@y
(l) known

y(l+1) = y(l) ⇤w

@R
@wi

=
X

k

@R
@y(l)

k

@y(l)
k

@wi

=
X

k

@R
@y(l)

k

@

@wi

h
y(l) ⇤w

i

k

=
X

k

@R
@y(l)

k

@

@wi

2

4
pX

o=�p

y(l�1)
k�o

wo

3

5 =
X

k

@R
@y(l)

k

y(l�1)
k�i

=
X

k

@R
@y(l)

k

y(l�1)
�(k�i)

=
X

k

@R
@y(l)

k

rot180(y(l�1))k�i

=

✓
@R
@y(l)

⇤ rot180(y(l�1))

◆

i

The derivative @R
@y

(l) is analogous.

Note that we just used generalized indices i, k, o which may be
multi-dimensional.
This example omits activation functions and biases, but that could
be easily included with the chain-rule.

D. (Rotation180) 8i : rot180(x)i = x(�i).

13.7 E�cient Comp. of Convolutional Activities
A naive way to compute the convolution of a signal of length n
and a kernel of length m gives an e↵ort of O(m · n). A faster way
is to transform both with the FFT and then just do element-wise
multiplication (e↵ort: O(n logn)). However, this is rarely done in
CNNs as the filters usually are small (m⌧ n, m ⇡ log(n)).

13.8 Typical Convolutional Layer Stages
A typical setup of a convolutional layer is as follows:
1. Convolution stage: a�ne transform
2. Detector stage: nonlinearity (e.g., ReLU)
3. Pooling stage: locally combine activities in some way (max, avg,

. . .)
locality of the item that activated the neurons isn’t too impor-
tant, further we profit from dimensionality reduction. alternative:
do convolution with stride. Another thing that turns out to be
so is that most of the kernels that are learned resemble a low-
pass filter. Hence, when we sub-sample the images most of the
information is still contained.
13.9 Pooling

The most frequently used pooling function is: max pooling. But
one can imagine using other pooling functions, such as: min, avg,
softmax,

D. (Max-Pooling)

Max pooling works, as follows, if we define a window size of r = 3
(in 1D or 2D), then

· 1D: xmax
i

= max {xi+k | 0  k < r}
· 2D: xmax

ij
= max {xi+k,j+l | 0  k, l < r}

So, in general we just take the maximum over a small
“patch”/”neighbourhood” of some units.

T. (Max-Pooling: Invariance)

Let T be the set of invertible transformations (e.g., integral trans-
forms, integal operators). Then T forms a group w.r.t. function
composition:

⌦
T , �,�1, id

↵
.

13.10 Sub-Sampling (aka “Strides”)

Often, it is desirable to reduce the size of the feature maps. That’s
why sub-sampling was introduced.

D. (Sub-Sampling) Hereby the temporal/spatial resolution is
reduced.
Com. Often, the sub-sampling is done via a max-pooling according
to some interval step size (a.k.a. stride)

� Loss of information
+
+ Dimensionality reduction
+ Increase of e�ciency

13.11 Channels
Ex.Here we have
· an input signal that is 2D with 3 channels (7x7x3) (image x
channels)

· and we want to learn two filters W0 and W1, which each process
the 3 channels, and sum the results of the convolutions across
each channel leading to a tensor of size 3x3x2 (convolution result
x num convolutions)

Usually we convolve over all of the channels together, such that each
convolution has the information of all channels at its disposition
and the order of the channels hence doesn’t matter.

13.12 CNNs in Computer Vision
So the typical use of convolution that we have in vision is: a
sequence of convolutions

1. that reduce the spatial dimensions (sub-sampling), and
2. that increase the number of channels.
The deeper we go in the network, we transform the spatial informa-
tion into a semantic representation. Usually, most of the parameters
lie in the fully connected layers

13.13 Famous CNN Architectures
13.13.1 LeNet, 1989

MNIST, 2 Convolutional Layers + 2 Fully-connected layers
13.13.2 LeNet5

MNIST, 3 Convolutional Layers (with max-pool subsampling) + 1
Fully connected layer

13.13.3 AlexNet
ImageNet: similar to LeNet5, just deeper and using GPU (perfor-
mance breaktrhough)

13.13.4 Inception Module
Now, a problem that arose with this ever deeper and deeper channels
were that the filters at every layer were getting longer and longer
and lots of their coe�cients were becoming zero (so no information
flowing through). So, Arora et al. came up with the idea of an
inception module.
What this inception module does is just taking all the channels
for one element in the space, and reduces their dimensionality.
Such that we don’t get too deep channels, and also compress the
information (learning the low-dimensional manifold).

This is what gave rise to the inception module:

D. (Dimension Reduction) m channels of a 1x1xk convolution
m  k:

x+ij = �(Wxij), W 2 Rm⇥k.

So it uses a 1x1 filter over the k input channels (which is actually
no convolution), aka “network within a network”.

13.13.5 Google Inception Network

The Google Inception Network uses many layers of this inception
module along with some other tricks
· dimensionality reduction through the inception modules
· convolutions at various sizes, as di↵erent filter sizes turned out
to be useful

· a max-pooling of the previous layer, and a dimensionality reduc-
tion of the result.

· 1x1 convs for dimension reduction before convolving with larg-
erkernels

· then all these informations are passed to the next layer.
· gradient shortcuts: connect softmax layer at intermediate stages
to have the gradient flow until the beginnings of the network.

· decomposition of convolution kernels for computational perfor-
mance.

· all-in-all the dimensionality reductions improved the e�ciency.
13.14 Networks Similar to CNNs

D. (Locally Connected Network) A locally connected network
has the same connections that a CNN would have, however, the
parameters are not shared. So the output nodes do not connect to
all nodes, just to a set of input nodes that are considered “near”
(locally connected).

13.15 Comparison of #Parameters (CNNs, FC, LC)

Ex. input image m⇥ n⇥ c (c =number of channels)

K convolution kernels: p⇥ q (valid padding and stride 1)

output dimensions: (m� p + 1)⇥ (n� q + 1)⇥K

Ex. input image m⇥ n⇥ c (c =number of channels)

K convolution kernels: k0 ⇥ k1 (padding p0, p1, stride s0, s1, dila-
tion d0, d1)

output dimensions:j
m+2p0�d0·(k0�1)�1

s0
+ 1
k
⇥
j

n+2p1�d1·(k1�1)�1
s1

+ 1
k
⇥K

#parameters CNN: K(pqc + 1)

#parameters of fully-conn. NN with same number of outputs as
CNN:
mnc((m� p + 1)(n� q + 1) + 1)K

#parameters of locally-conn. NN with same connections as CNN:
pqc((m� p + 1)(n� q + 1) + 1)K

Ex.Assume we have an m⇥ n image (with one channel).

And we convolve it with a filter (2p + 1)⇥ (2q + 1)

Then the convolved image has dimensions (assuming stride 1)

· valid padding (only where it’s defined): (m� 2p)⇥ (n� 2q)
· same padding (extend image with constant): m⇥ n where the
extended image has size (m + 2p)⇥ (n + 2q).

14 Optimization

14.1 Learning as Optimization
Machine learning uses optimization, but it’s not equal to optimiza-
tion for two reasons:
1. The empirical risk is only a proxy for the expected risk
2. The loss function may only be a surrogate

14.2 Objectives as Expectations

r✓R(D) = ESN⇠pD
[r✓R(SN)] = E

"
1

N

NX

i=1

r✓R(✓; {x[i],y[i]})
#

The typical structure of a learning objective in a NN is a large finite

sum (over all training instances). Accuracy-complexity trade-o↵: in
practice we subsample terms in the sum, by using mini-batches of
the training data (so we’ll get something close to the true gradient
- but not exactly). The idea behind it, is that everything will work
out in expectation. Further, we favour cheap and imprecise com-
putations over many datapoints rather than precise and expensive
computations over a few datapoints.

14.3 Gradient Descent
✓(t + 1) = ✓(t)� ⌘tr✓R,

✓̇ = �⌘tr✓R(✓)

14.4 Gradient Descent: Classic Analysis
In classical machine learning we have a convex objective R. And
we denote
· R⇤ as the minimum of R
· ✓⇤ as the optimal set of parameters (the minimizer of R)

So we have 8✓ 6= ✓⇤ : R⇤ := R(✓⇤)  R(✓).

D. (Strictly Convex Objective) ! objective has only one (a
unique) minimum.

8✓ 6= ✓⇤ : R⇤ := R(✓⇤) < R(✓).

D. (L-Lipschitz Continous Function) Given two metric spaces

(X, dX) and (Y, dY), where dX denotes the metric on the set X,
and dY denotes the metric on set Y , a function f : X ! Y is called
Lipschitz continuous, if there exists a real constant L 2 R+

0 , such
that

8x1, x2 2 X : dY (f(x1), f(x2))  L · dX(x1, x2).

Hereby, L is referred to as a Lipschitz constant for f .
· If L = 1 the function is called a short map

· If 0  L < 1 and f maps a metric space to itself, so f : X ! X,
then the function f is called a contraction.

In particular, a map f : Rn ! Rm is called Lipschitz continous if
there exists a L 2 R+

0 such that

8x1,x2 2 Rn : kf(x1)� f(x2)k| {z }
=dRm (f(x1),f(x2))

 L · kx1 � x2k| {z }
dRn (x1,x2)

.

Ex.So for our risk function R, we say that the gradient of it

r✓R : ⌦! ⌦ where ⌦ = Rn

is L-Lipschitz continous, if it holds that

8✓1, ✓2 2 ⇥ : kr✓R(✓1)�r✓R(✓2)k  L k✓1 � ✓2k

Com. So, the L tells us how big the gradient could be.

T.We have the following chain of inclusions for functions over a
closed and bounded (i.e., compact) subset of the real line.

Continously di↵erentiable ✓ Lipschitz continuous ✓ (Uniformly)
continous
Com. It’s important that the space is bounded. Because for exam-
ple only on a compact subset [a, b] ⇢ R the function ex is Lipschitz
continous. On R the function ex is not Lipschitz continuous, as it
gets arbitrarily steep.
https://en.wikipedia.org/wiki/Lipschitz_continuity#
Properties

T.An everywhere di↵erentiable function f : R! R is Lipschitz con-
tinuous (with L = sup

��f 0(x)
��) i↵ it has bounded first derivatives.

T. In particular any continously di↵erentiable function is locally

Lipschitz continuous. As continuous functions are bounded on an
interval, so its gradient is locally bounded as well.

T. If R is convex with L-Lipschitz-continuous gradients then we
have that

R(✓(t))�R⇤ 
2L

t + 1

��✓(0)� ✓⇤
��2 2 O(t�1)

Com. So we have a polynomial (linear) convergence rate of ✓ to-
wards the optimal parameter ✓⇤ (note: just in the convex setting!).
As we can see, the convergence time is bounded by a time that
depends on our initial guess, and the Lipschitz constant L.
Com. Usually one value for ⌘ that people use in this setting is
⌘ := 1

L
or ⌘ := 2

L
.

Proof. See here

D. (Convex Set) A set S ✓ Rd is called convex if

8x,x0 2 ⌃, 8� 2 [0, 1] : �x + (1� �)x0 2 S.

Com. Any point on the line between two points is within the set.

D. (Convex Function) A function f : S ! R defined on a convex

set S ✓ Rd is called convex if

8x,x0 2 S, � 2 [0, 1] : f(�x + (1� �)x0)  �f(x) + (1� �)f(x)

Com. convex combination of two points < evaluation of convex
combination of two points.
Com. Another way to formulate that f is convex function is to
say that the epi-graph of f is a convex set.

T.Every local optimum of a convex function is a global optimum.

T. (Operations that Preserve Convexity)

· �f is concave if and only if f is convex
· nonnegative weighted sums
· point/element-wise maximum max(f1(x), . . . , fn(x))

· composition with non-decreasing function, e.g. ef(x)

· composition with a�ne mapping: f(Ax + b)
· restriction to a line (of convex set domain)

D. (Strictly Convex Function) f is called strictly convex if

8x,x0 2 S,x 6= x0 � 2 [0, 1] : f(�x+(1��)x0) < �f(x)+(1��)f(x)

D. (Strongly Convex Function) A di↵erentiable function f is
called µ-strongly convex if the following inequality holds for all
points x,y in its domain:

8xy : hrf(y)�rf(x),y � xi � µ ky � xk22
where k · k is any norm. An equivalent condition is the following:

8x,y : f(y) � f(x) +rf(x)T(y � x) +
µ

2
ky � xk22 .

Com. The concept of strong convexity extends and parametrizes
the notion of strict convexity. A strongly convex function is also
strictly convex, but not vice versa. Notice how the definition of
strong convexity approaches the definition for strict convexity as
µ! 0, and is identical to the definition of a convex function when
µ = 0. Despite this, functions exist that are strictly convex, but
are not strongly convex for any µ > 0.

T.Now, when R is µ-strongly convex in ✓ and its gradient is L-
Lipschitz continuous =)

R(✓(t))�R⇤ 
✓
1�

µ

L

◆
t

(R(✓(0))�R⇤) 2 O
✓✓

1�
µ

L

◆
t
◆

So we have
· an exponential convergence (“linear rate”)
· and the rate depends adversely on the condition number L

µ
. So

we want the maximum gradient to be small, and we want the
curvature to be large (which are somewhat contrary desires, but
ideally the condition number is very close to 1).

T. If we use Nesterov acceleration (in the general case), then we
get a polynomial convergence rate of O(t�2).

Com. The trick used in the Nesterov approach is momentum.
14.5 Optimization Challenges in NNs: Curvatures

When it comes to NNs the objective is usually non-convex. So this
is for example an objective that we may get that is non-convex.
Still, we can apply gradient descent in this setting. And if we
respect the rule of choosing the learning rate as ⌘ = 1

L
where L is

the Lipschitz-constant of the function, then usually, we’re fine.

So the problem is if we have sharp non-linearities, then there are
two approaches to solve this
· one is to be very conservative and only do small update steps by
choosing a very small learning rate.

· or we are courageous and due huge jumps as depicted in the
image.

So this is kindof the typical problem that, at least some people
think, happens with NNs.
Typical approaches are to clip the gradient when it gets too large,
or use a decreasing learning rate (in terms of time).

Now, the problem is not that the cli↵ is very steep. The problem is
the curvature. Because when we take the gradient, the gradient is
actually constant on the wall of the cli↵. Let’s have a look at this
through some equations.
Now, let’s evaluate what the risk is at some point, plus some gradi-
ent step. If we do the 2nd-order Taylor expansion of that, then we
get

R(✓�⌘r✓R(✓))
Taylor
⇡ R(✓)�⌘ kr✓R(✓)k22+

⌘2

2
r✓R(✓)THr✓R(✓)
| {z }
kr✓

R(✓)k2
H

where
H := r2R(✓) (Hessian matrix)

Now, what we want is that the rest of the sum is negative. If that
is the case, because then we’re improving our cost function. If not,
then we’re basically diverging.
So,

· the first term �⌘ kr✓R(✓)k22 will obviously be negative, as it’s
a negative factor of a norm

· the second term will always be positive, as the hessian matrix is
positive semi-definite. Fortunately, we’re squaring ⌘, which may
be already small, so the term is small. However, if the Hessian
is ill-conditioned (as in the cli↵-situation (curvature)). Then we
can have a very large positive value in the second term. So what
then can happen is that

⌘

2
kr✓R(✓)k2

H
& kr✓R(✓)k2

So, the hessian term becomes much larger than the gradient. So
we’re not improving our cost function.

· and the remaining terms, will be negative (as defined by the
Taylor sum)

So a typical remedy for first-order methods is to take very small
step sizes ⌘.

However, things bececome even stranger because of the curvature.
As we can see, the gradient norm gets larger and larger the more
we train (can be checked empirically). And the gradient norm also
tends to have larger fluctuations. And as we can see, starting at
some point, the error just fluctuates around at a certain level. Actu-
ally, one might assume that as we’re getting closer to the minimum,
the gradient should get smaller and smaller, as the objective gets
flatter and flatter at the optimal point - but that’s actually not the
case!

This is probably so, because we’re dealing with large curvatures
when reaching (or getting close to) the optimal parameters. So with
gradient descent we may not arrive at a critical point of any kind,
and this also motivates to use more and more decreasing learning
rates, the closer we get to the optimal parameters. Note that this
graph was built using the MNIST dataset and some CNN.
Note that there exist many architectures where the final gradient
was very large, and still they are used in practice, and people are
quite happy with them.

14.6 Optimization Challenges in NNs: Local Min-
ima

At the beginning people were happy when they were doing con-
vex optimization because there was a single optimum and it was
reachable. And then when people started using non-convex opti-
mization they were afraid of getting into non-optimal local minima
and getting stuck there.

Neural network cost functions can have many local minima and/or
saddle points - and this is typical. Gradient descent can get stuck.
Questions that have been looked at are
· Ar local minima a practical issue? Somtimes not: Gori & Tesi,
1992

· Do local minima even exist? Sometimes not (auto encoder):
Baldi & Hornik, 1989

· Are local minima typically worse? often not (large networks):
e.g., Choromanska et al, 2015

· Can we understand the learning dynamics? Deep linear case has
similarities with non-linear case, e.g., Saxe et al., 2013

So it turns out that the non-convexity is actually not so much of
an issue. It turns out that when we go to very high dimensions, the
number of local minima VS the number of saddle points (gradient
is zero, but non-optimal) is very small - so we’re much more likely
to end up in a saddle point. However, in practice, if we do SGD
there is some stochasticity that will make our gradient move. Then,
after waiting for a while we’ll exit the saddle point.
Now, next we’ll look at the insights that were gained by the paper
of Saxe.

14.7 Least Squares: Single Layer Lin. Netw.

Let’s assume that we have some inputs x 2 Rn = X and some
outputs y 2 Rm = Y, and we have a very simple architecture, that
will take our input x and transform it to some output in Y the
output space

F (x) = Ax, A 2 Rm⇥n

So then, we can define our risk as

R(A) = E
h
ky �Axk22

i
.

so we’re taking the expectation with regard to the empirical distri-
bution (averaginv over all (x,y)-training pairs).

Now, to make things simpler, we assume that the inputs are
whitened, that means that

E
h
xxT

i
= I

So if the mean µ = o, then our input is uncorrelated, and every
feature is of variance 1.
Further, have a look at the following trace identities

vTw =
X

i

viwi = Tr
⇣
vwT

⌘
= Tr

⇣
wvT

⌘

Tr (A + B) = Tr (A) + Tr (B)

E [Tr (X)] = Tr (E [X]) (linearity of trace and exp.)

Now let’s see if we can rewrite the risk di↵erently

R(A|{z}
=✓

) = E
h
ky �Axk22

i

= E
h
Tr
⇣
(y �A)(y �A)T

⌘i

Using the linearity of the expectation and the trace, and some trace
identities leads us to

= Tr
⇣
E
h
yyT

i⌘
� 2Tr(AE

h
xyT

i

| {z }
=:�T

,�2Rm⇥n

) + Tr(AE
h
xxT

i

| {z }
=I (by ass.)

AT)

= Tr
⇣
E
h
yyT

i⌘

| {z }
indep. of A

�2Tr
⇣
A�T

⌘
+ Tr

⇣
AAT

⌘

Now, let’s see how we can minimize the risk

A⇤ = argmin
A

R(A)

= argmin
A

�2Tr
⇣
A�T

⌘
+ Tr

⇣
AAT

⌘

Now it’s hard to continue from here, so we’ll just do it via computing
the gradient (generalized) and setting it equal to zero:

R(A) = Tr
⇣
E
h
yyT

i⌘
� 2Tr

⇣
A�T

⌘
+ Tr

⇣
AAT

⌘

rAR(A) = �2� + 2A = 2(A� �)

So, obviously, the derivative is zero for

A⇤ = � = E
h
xyT

iT
= E

h
yxT

i
emp. dist

=
1

N

NX

i=1

y[i]x[i]T.

Note that when computing the derivative we’ve used the following
trace di↵erentiation rules (cf. wikipedia, The Matrix Cookbook)

rATr
⇣
AAT

⌘
= 2A rATr (AB) = BT

Note that one could have solved the solution also through the follow-
ing way, by recognizing that A(t) follows the following di↵erential
equation

Ȧ(t) = �⌘rAR(A(t)) = 2⌘(��A(t)) = 2⌘�� 2⌘A(t).

So rearranging the equation for A(t) we get

A(t) = �
1

2
⌘Ȧ(t) + �

And now, since we’re using gradient descent, we’ll converge, and
the gradients will go to zero, hence

lim
t!1

A(t) = �
1

2
⌘

✓
lim

t!1
Ȧ(t)

◆

| {z }
!0

+� = �.

So A(t) will converge to �.

14.8 Least Squares: Two-Layer Lin. Netw.
Now, the question is what happens, when we build a two-layer
linear network (again with the squared error), with no nonlinearity.
So we’ll have a linear mapping (that is composed of two linear
mappings)

F (x) = Ax = QWx

Now, from what we’ve seen before, we can express the risk as (due
to trace identities, trace linearity, etc.) just by replacing A = QW,
so

R(Q,W) = const. + Tr
⇣
(QW)(QW)T

⌘
� 2Tr

⇣
QW�T

⌘

Now, taking the derivatives w.r.t. the parameters, we get (using
the chain rule)

rQR(Q,W) =
@R(A)

@A

@A

@Q

rWR(Q,W) =
@R(A)

@A

@A

@W

Which in the end gives us

rQR(Q,W) = 2QW| {z }
=A

WT � 2�WT = 2(A� �)WT

rWR(Q,W) = 2QT QW| {z }
=A

�2QT� = 2QT(A� �)

Now, what we’ll do is we’ll perform the SVD of � (we can do this
since � only depends on the data, it was the correlation matrix
between the inputs and the outputs). So,

� = U⌃VT.

Now, we’ll linearly transform the variables:

eQ = UTQ () Q = UeQ
fW = WV () W = fWVT

Then, we have that the common term in the gradients A� � can
be written as follows

A� � = QW �U⌃VT

= UUTQ| {z }
= eQ

WV| {z }
=fW

VT �U⌃VT

= U(eQfW �⌃)VT

And we can re-express the risk in terms of eQ,fW as follows:

R(eQ,fW) = const. + Tr
⇣
(UT eQfWVT)(UT eQfWVT)T

⌘

� 2Tr
⇣
(UT eQfWVT)�T

⌘

And we can compute the corresponding projected gradients in terms

of eQ,fW as follows.

r eQR(eQ,fW) = UTrQR(Q,W) = · · ·
· · · = · · ·

So, as we can easily see, the gradients can be computed through
the rules of linearity.

14.9 Stochastic Gradient Descent
So, how do we modify the gradient descent approach to work with
batches?
The idea in stochastic gradient descent is to choose the update
directin V at random, such that

E [V] = �r✓R.

So, the randomization scheme is unbiased.
So SGD works via subsampling. So we pick a random subset

SK ✓ SN , K  N. (usually K ⌧ N)

And since we’re picking SK at random, note how

E [R(SK)] = R(SN)

And thus it also holds for the gradient that

r✓E [R(SK)]
lin.
= E [r✓R(SK)] = r✓R(SN).

So, with SGD, we just do gradient descent, where at each t we’ll
do a randomization of SK , so

✓(t + 1) = ✓(t)� ⌘r✓R(✓(t);SK(t))

In practice, what is done is we permute the instances, and break
them up into mini-batches. So we’re actually not doing random
sampling at every timestep. We’re rather doing a random parti-
tioning of the training instances into batches. This gives rise to the
following definitions:

D. (Epoch = one sweep through the whole data)

· take the data batch by batch
· compute one gradient by batch
· harder to analyze theoretically
· typically works better in practice
· no permutation ! danger of “unlearning”. Let’s suppose we’re
training for MNIST, and we’re first doing the gradient steps
for the 1s, then for the 2s, etc. This will completely bias the
gradient and lead us into the wrong direction at every gradient
step. In the end we’ll never converge to a good solution.

Com. It happens that this way SGD is a bit harder to analyze
theoretically, but for NNs it works quite well in practice.

D. (Minibatch Size)

· “Standard SGD”: k = 1, this is for classical SGD. However, if
we only take one instance, the error on the gradient direction
will be too large.

· but: larger k is better for utilizing concurrency in GPUs or mul-
ticore CPUs. And we’ll also get more accuracy. Of course, this
requires more computation per gradient step, so we’ll have to
compute more to do one step, but it pays of in terms of accuracy
of the gradient (and it can be parallelized anyways).

Com. In practice we just need to ensure that the batch is su�-
ciently big to have a representative subsample to compute a reliable
estimate of the gradient (in order to converge). Further, we usually
use batch-sizes of 2k for some k 2 N.

14.9.1 Convergence Rates
Under certain conditions SGD converges to the optimum:
· If we have a convex, or strongly convex objective,
· and if we have Lipschitz continous gradients,
· and a deaying learning rate, s.t.

1X

t=1

⌘t =1

| {z }
we get far enough

,
1X

t=1

⌘2
t
<1

| {z }
our steps get always smaller

typically ⌘t = Ct�↵, 1
2 < ↵ < 1 (c.f. harmonic series.)

· or we use iterate (Polyak) averaging (once we start jumping
around, we average the solutions over time).

Then, we can get the following convergence rates:

· strongly-convex case: can achieve a O(1/t) suboptimality rate
(only polynomial convergence)

· non-strongly convex case: O(1/
p
t) suboptimality rate (even

worse than polynomial convergence)

So, even if the convergence rates are not super nice, thanks to the
cheap gradient computation (only one example at the time), we
may even converge faster than computing the gradient on the full
dataset everytime.

14.9.2 Practicalities
Now, let’s have a look at some of the practicalities:
· Almost none of the analysis applies to the non-convex case
· Choosing a learning rate schedule can be a nuisance
· Fast decay schedules may lead to super-slow convergence
· In practice, we tend to use larger step sizes and level out at a
minimal step size. The justification behind this that the SGD
with a fixed step size is known to converge to a ball around the
optimum (strongly convex case). So we may use

⌘t = max(0.001,
1

t
).

· Further, there’s the common belief that the stochasticity of the
SGD is a “feature”, since it may help to escape from reagions
with small gradients via perturbations.
14.9.3 Momentum

Accumulate the gradient over several updates (as a geometrically
weighted average). The momentum (averaging) keeps the gradient
moving better towards the optimum (instead of zig-zagging).

Initialization: ↵ = 0.95 (typically), m(0) = o.

Then at every timestep t = 1, 2, . . .

m(t) = ↵m(t� 1)� (1� ↵)r✓R(✓(t� 1)),

bm(t) = m(t)

(1�↵)t
(bias correction, otw. gradient is too small at

beginning)

✓(t) = ✓(t� 1)� ⌘ bm(t) (update parameters)

Usually it’s good to choose a small alpha (0.5) at the beginning,
and only towards the end, we’ll increase alpha to 0.99 to accumulate
and average the speed.

14.9.4 Nesterov Momentum
First jump, and then compute the momentum based on the gradient
at the place that we’ll land (seems to work better in practice).

✓(t + 1) = ✓(t) + ⌘↵ bm(t) (jump first)

v(t+1) = ↵v(t)+✏r✓R(✓(t)+↵ bm(t)). (and then correct the jump
with the gradient at the place that we jumped to)

14.9.5 AdaGrad
With AdaGrad we consider the entire history of gradients and put
all the gradients ito a gradient matrix, so

✓ 2 Rd, G 2 Rd⇥tmax , git =
@R(t)

@✓i

����
✓=✓(t)

Then we compute the (partial) row sums of squares of G (note: not
the gradient norms! ! rows!)

�2
i
(t) :=

tX

s=1

g2
is
.

And then we adapt the gradient stepsize for each dimension as
follows:

✓i(t + 1) = ✓i(t)�
⌘

� + �i(t)
r✓R(t), � > 0 (small)

This will transform the gradient such as if the loss landscape would
be in a more isometric shape. It will scale the gradient appropri-
ately into each dimension. So instead of having a valley, we’ll have
a nice round hole again. This avoids this typical situation where
the gradient descent boundes left and right in the valley, instead of
walking down the valley.

In practice a variant of AdaGrad (RMSprop) is used. Intuitively:
the learning rate decays faster for weights that have seen significant
updates.

Theoretical justification: regret bounds for convex objectives (Duchi,
Hazan, Singer, 2011) (out of scope for this lecture).

So, Tieleman & Hinton came up with a “non-convex variant of
AdaGrad” in 2012:

�2
i
(t) :=

tX

s=1

⇢t�sg2
is
, ⇢ < 1.

This is just a moving average, which is exponentially weighted. The
weight decays exponentially over time, and thus .
It turns out that this optimizer works very nice some times.

14.9.6 ADAM
Adam is probably the most popular optimizer today. It takes the
best of both worlds: AdaGrad (adapting the gradient) + Momen-
tum. However, more parameters to tune (�1, �2).

Initialization: m(0) = o, v(0) = o

Typical values: �1 = 0.9, �2 = 0.999, ✏ = 10�8

Then at every timestep t = 1, 2, . . .

g(t) = r✓R(✓(t� 1)) (get the gradient)

m(t) = �1m(t� 1) + (1� �1)g(t) (update the biased first moment
estimate)

v(t) = �2v(t�1)+(1��2)g(t)
2 (update the b. second raw moment

estimate)

m̂(t) = m(t)(1� �t

1) (bias correction first moment estimate)

v̂(t) = v(t)(1� �t

2) (bias correction second raw moment estimate)

✓(t) = ✓(t� 1) + ⌘m̂(t)/(
p

v̂(t) + ✏) (update params)

14.10 Optimization Heuristics
Polyak Averaging may bring us good guarantees if we have a convex
loss (on average). However, for DL it’s not ideal. The reason are

· if we may want to have an idea over what the gradient over the
whole dataset would be, then we’d have to swipe over all the
dataset which will take a lot of time. So, it’s nood a good idea
(we’ll get a better but slower convergence). So what people do
in practice instead is that they just run a weighted average to
forget what was in the past. Usually, the weighted

·
14.10.1 Batch Normalization

Batch normalization (Io↵e & Szegedy, 2015) is one of the most
controversial but most useful tricks in DL.
One of the big problems that we have when we optimize NNs, is
that usually there exist strong dependencies between the weights
in various layers (recall: we also saw that the gradients interact
with each other through complex dynamics). So it’s hard to find
a suitable learning rate for all the situations of the weights. The
dynamics were fine in this case, but if we have a large network it
might not work out, and we may have to wait a long time until the
dynamics diminish and lead to the solution. What batch normal-
ization tries to achieve is to remove the dependencies between the
layers. So the learning algorithm can optimize the weights of each
layer independently. Of course, that’s not really what happens, but
anyways that’s the idea behind it.
Let’s have alook at a toy example to illustrate this is: a deep linear
network with one unit per layer:

y = w1w2 · · · · · wLx =

LY

l=1

wl

!
x

For later notation, let us collect all the weights in a set

W := {w1, . . . , wL}

After the gradient step we’ll have the following situation:

ynew =

LY

l=1

✓
wl � ⌘

@R
@wl

◆!
x

So what actually happens is that if we take the term for ynew and
we expand it this leads to terms of up to order L.

=

✓
w1 � ⌘

@R
@w1

◆✓
w2 � ⌘

@R
@w2

◆
· · ·
✓
wL � ⌘

@R
@wL

◆
x

=

LY

l=1

wl

!
� ⌘

@R
@w1

LY

l=2

wl

!
+ · · · + (�⌘)L

LY

l=1

@R
@wl

!!
x

=

LY

l=1

wl

!
x

| {z }
=y

�⌘
@R
@w1

LY

l=2

wl

!
x + · · · + (�⌘)L

LY

l=1

@R
@wl

!
x

= y�⌘
@R
@w1

LY

l=2

wl

!
x + · · · + (�⌘)L

LY

l=1

@R
@wl

!
x

| {z }
(⇤) significant?

= y +
X

S2P(W)

2

4(�⌘)|W�S|

0

@
Y

w2S

w

1

A

0

@
Y

w2W�S

@R
@w

1

A x

3

5

| {z }
(⇤) significant?

Hence, the higher order terms in terms of ⌘ (⇤) may become signifi-
cant, despite the damping.

The key idea of batch-normalization is to normalize the layer activa-
tions (! batch normalization) and then to backpropagate through
the normalization. So it “keeps the same distribution” at each layer.
And if we optimize the weights of a layer, it should not a↵ect the
distribution at the end of the layer.
So what we do is
· we fix a layer l,
· and we fix a set of examples I ⇢ [1 : N]
· and compute the mean activities and a vector of the standard
deviations

µl :=
1

|I|
X

i2I

(F l � · · · � F 1)(x[i]) 2 Rm
l

�l 2 Rm
l

�l

j
:=

vuut� +
1

|I|
X

i2I

⇣
(F l

j
� · · · � F 1)(x[i])� µl

j

⌘2
, � > 0,

· then we remove the mean and divide by the standard deviation
to normalize the activities.

x̃l

j
:=

xl

j
� µl

j

�l

j

However, when we do this, what happens is that we can rep-
resent less than before. We may only have distributions with
mean zero, and variance one (because we enforce this through
the normalization). So we need to do something to regain the
representational power. What we do is we multiply by some
coe�cients ↵j and �j

˜̃xl

j
= ↵l

j
x̃l

j
+ �l

j

So since µ and � are functions of the weights and they can be
di↵erentiated.
A further note about batch-normalization is that it doesn’t change
the information in the data, because since we have µ and � we
could theoretically recuperate the original activations.
Now, some implementation details:
· The bias term before the batch normalization should be removed
(since we’re removing the mean it makes no sense).

· At training time, the statistics are computed per batch, hence
they’re very noisy. So what people do in practice (e.g., when
they’re predicting just one sample) is that they keep a running
average over the batch batch-norm statistics. So, at test time, µ
and � are replaced by the running averages that were collected
during training time. An alternative, is to pass through the
whole dataset at the end of the training and re-compute the
statistics - that may work even better (but it takes a lot of time).

What is not very clear is why batch-normalization works. The orig-
inal paper about batch-normalization (BN) said that BN reduces
the internal covariance shift of the data. What they meant by this
is that: let’s say that we have a very simple classifier, that will
basically classify everything that is negative to one class, and ev-
erything that is positive to another class. Then, when we just shift
the data by a constant vector, then, without batch-normalization
we’d shift all the datapoints into one class. However, with BN since
the mean is removed we’ll remove that constant shift the BN layer
and it will work out. So BN reduces the covariance shift. That was
the e↵ect that the inventors of BN described.
However, it turns out that some other people came later on and said
the following: They didn’t negate the e↵ect of the covariance-shift
reduction, but the reason they said that BN works is that it makes
the landscape of the loss more smooth. Hence, the optimization
works better and gives better results.
However, no-one really knows why BN works so well.

14.10.2 Other Heuristics
· Curriculum learning and non-uniform sampling of
data points ! focus on the most relevant examples (Bengio,
Louradour, Collobert, Weston, 2009) (DL-Book: 8.7.6) Or
increase hardness of tasks (corner-cases9 as NN improves

· Continuation methods: define a family of (simpler) objective
functions and track solutions, gradually change hardness of loss
(DL-Book: 8.7.6)

· Heuristics for initialization (DL-Book: 8.4) scale the weights
of each layer in a way that at at the end of the layer, the data
has more or less the same energy (and gradient norms are more
or less the same at each layer).

· pre-training (DL-Book: 8.7.4). for better initialization, to
avoid local minima (less relevant today).

1
7

U
N
S
U
P
E
R
V
IS
E
D

L
E
A
R
N
IN

G
1
4
.1
1

N
o
rm

-B
a
sed

R
egu

larization

14.11 Norm-Based Regularization

R⌦(✓;S) = R(✓;S) + ⌦(✓),

where ⌦ is a functional (function from a vector-space to the field
over which it’s defined) that does not depend on the training data.

D. (L2 Frobenius-Norm Penalty (Weight Decay))

⌦(✓) = 1
2

P
L

l=1 �
l kWk2

F
, �l � 0

Com. It’s common practice to only penalize the weights, and not
the biases.
So, the assumption here is that the weights have to be small. So
we’ll only allow a big increase in the weights, if it comes at a
much bigger increase in performance. Regularization based on the
L2-norm is also called weight-decay, as
@⌦

@w
l

ij

= �lwl

ij
,

which means that the weights in the l-th layer get pulled towards
zero with “gain” �l. What happens in the gradient-update step is

✓(t + 1) = ✓(t)�r✓R⌦(✓;S)

= (1� ⌘�l)✓(t)
| {z }
weight decay

� ⌘|{z}
step
size

r✓R| {z }
data dep.

.

and also note that we require ⌘�l < 1.

Let’s analyze the weight decay: The Quadratic (Taylor) approxi-
mation of R around the optimal ✓⇤ would be

R(✓) ⇡ R(✓⇤) +r✓R(✓⇤)T
| {z }

=o

(✓ � ✓⇤) +
1

2
(✓ � ✓⇤)TH(✓ � ✓⇤)

= R(✓⇤) +
1

2
(✓ � ✓⇤)TH(✓ � ✓⇤) (?)

where HR is the hessian of R, so

(HR)i,j =
@2R
@✓i@✓j

and H is the evaluation of HR at ✓⇤:

H := HR(✓⇤).

So now we have the upper quadratic approximation of the cost
function (?) (so we’re assuming it is a parabola and that we know
✓⇤). Now, let’s compute the gradient of that upper approximation
of R (in (?)).

r✓


R(✓⇤) +

1

2
(✓ � ✓⇤)TH(✓ � ✓⇤)

�
= �H✓⇤ + H✓ (*)

Further, recall that

r✓⌦ = �� ✓ = diag(�)✓

So, now, let’s set r✓R⌦ (with r✓R approximated as in (⇤)) equal
to zero.

r✓R⌦
!
⇡ 0

() �H✓⇤ + H✓ + diag(�)✓
!
= 0

() (H + diag(�))✓ = H✓⇤

Since both H and diag(�) are s.p.s.d. we can invert their sum

() ✓ = (H + diag(�))�1H✓⇤

Now, what we can directly see here is that if we use no L2-
regularization ✓ = ✓⇤. Now, since H is s.p.s.d. we can diagonalize it
to H = Q⇤QT where ⇤ = diag(✏1, . . . , ✏d) and plug this in which
gives us

✓ = (Q⇤QT + diag(�))�1Q⇤QT ✓⇤
=
= Q (⇤ + diag(�))�1⇤

| {z }
=diag

✓
✏1

✏1+�1
,...,

✏
d

✏
d
+�

d

◆
QT✓⇤.

So this gives us an idea what happens with ✓⇤ in the directions of
the eigenvectors of the hessian H if we use L2-regularization:
· if ✏i � �i: e↵ect vanishes: along directions in parameter space
with large eigenvalues ✏i the weights are almost not reduced

· if ✏i ⌧ �i: shrinking e↵ect: along the directions in parameter
space with small eigenvalues ✏i the weights are shrunk to nearly
zero magnitude.

The following picture illustrates this better:

The isometric balls illustrate the regularization loss (L2) for any
choice of ✓ (or w), and the ellipsoid curves illustrate the risk (for a
parabolic risk). So w̃ is the point with the least loss for its specific
regularization loss. As we can see, at that point
· downwards the risk has a large eigenvalue, as the risk increases
rapidly. And as we’ve stated above, the value of w along that
dimension is not reduced that much.

· from right to left (starting at w⇤) the risk has a very low eigen-
value, and hence w̃ is reduced much more along that dimension.

D. (L1-Regularization (sparsity inducing))

⌦(✓) =
P

L

l=1 �
l

���Wl

���
1
=
P

L

l=1 �
l
P

i,j
|wij | , �l � 0

14.11.1 Regularization via Constrained Optimization
An alternative view on regularization is for a given r > 0, solve

min
✓,k✓kr

R(✓.)

So we’re also constraining the size of the coe�cients indirecty, be
constraining ✓ to some ball.

The simple optimization approach to this is: projected gradient
descent

✓(t + 1) = ⇧r(✓(t)� ⌘rR), ⇧r(v) := min

⇢
1,

r

kvk

�
v

So we’re essentially clipping the weights.

Actually, for each � in L2-Regularization there is a radius r that
would make the two problems equivalent (if the loss is convex).

Hinton made some research in 2013 and realized that
· the constraints do not a↵ect the initial learning (as the weights
are assumed to be small at the beginning), so we won’t clip the
weights. So the constraints only become active, once the weights
are large.

· alternatively, we may just constrain the norm of the incoming
weights for each unit (so use row-norms for the weight matrices).
This had some practical success in stabilizing the optimization.
14.11.2 Early Stopping

Gradient descent usually evolves solutions from: simple + robust!
complex + sensitive. Hence, it makes sense to stop training early (as
soon as validation loss flattens/increases). Also: computationally
attractive.
Since the weights are initialized to small values (and grow and grow
to fit/overfit) we’re kindof clipping/constraining the weight sizes
by stopping the learning process earlier.
Let’s analyze the situation closer: If we study the gradient descent
trajectories through a quadratic approximation of the loss around
the optimal set of parameters ✓⇤. We’ve derived previously already
(and show it here again with slightly di↵erent notation) that:

r✓R|
✓0
⇡ r✓R|

✓⇤ + JrR
✓

��
✓⇤ (✓0 � ✓⇤) = H(✓0 � ✓⇤).

This is just because the Jacobian of the gradient map is the Hessian
HR from before.

So (as seen previously) we have that

✓(t + 1) = ✓(t)� ⌘r✓R|
✓(t) ⇡ ✓(t)� ⌘H(✓(t)� ✓⇤).

Now, subtracting ✓⇤ on both sides gives us

✓(t + 1)� ✓⇤ ⇡ (I� ⌘H)(✓(t)� ✓⇤)

Now we’ll use the same trick as before that we can diagonalize the
hessian H as it’s s.p.s.d., so H = Q⇤QT. Inserting this gives us:

✓(t + 1)� ✓⇤ ⇡ (I� ⌘Q⇤QT)(✓(t)� ✓⇤)

Now let’s have a look at everything w.r.t the eigenbasis of H, let’s
define ✓̃ = QT✓. Then

✓̃(t + 1)� ✓̃⇤ ⇡ (I� ⌘⇤)(✓̃(t)� ✓̃⇤)

Now, assuming ✓(0) = o (and inserting and using it) and a small ⌘
(8i : |1� ⌘�i| < 1) one gets explicitly

✓̃(t) = ✓̃⇤ � (I� ⌘⇤)t✓̃⇤
| {z }

!0 with upper ass. on eigenvalues

.

Thus (comparing to the previous analysis) if we can choose t, ⌘ s.t.

(I� ⌘⇤)t
!
= �(⇤ + �I)�1

which for ⌘✏i ⌧ 1, and ✏i ⌧ � can be achieved approximately via
performing t = 1

⌘�
steps.

So early stopping (up to the first order) can thus be seen as an
approximate L2-regularizer.

14.12 Dataset Augmentation
Applying some transformations to the input data such that we
know that the output is not a↵ected. E.g., for images: mirroring,
slight rotations, scaling, slight shearing, brightness changes. Blows
up data, but: there are approaches to incorporating this into the
gradient instead of the input data.

14.12.1 Invariant Architectures
Instead of augmenting the dataset one could build an architecture
that is invariant to certain transformations of the data.
First, we distinguish the following terms: Let’s say we have some
x and apply the transformation x0 := ⌧(x). Then for our neural
network F
· D. (Invariance) means that F (x) = F (⌧(x)).
· D. (Equivariance) means that ⌧(F (x)) = F (⌧(x)).
So applying the transformation before or after applying F doesn’t
change a thing (e.g., convolutions and translations are equivari-
ant).

E.g. NNs where the first layer is a convolution are invariant to
image translation. Hence, it would make no sense to augment the
dataset of images with translations. It also saves computation and
memory not to do this. So if we have an architecture that is invari-
ant to certain dataset augmentations the augmentations become
obsolete. So, if you can, choose an invariant architecture to make
your life easier in the first place.

14.12.2 Injection of Noise

At various places: inputs (noise robustness), weights (regulariza-
tion), targets (network becomes more careful)

14.12.3 Semi-Supervised Training
If we have a lot of data, but only a few datapoints are labeled.
Then semi-supervised training may become useful. You may build
a generative model or an autoencoder to learn how to represent
your data (learn features). Then, we train a supervised model on
top of these representations.

14.12.4 Multi-Task Learning
If we have di↵erent tasks that we may want to solve, we may share
the intermediate representations across the tasks and then learn
jointly (i.e., minimize the combined objective). A typical archi-
tecture would be to share the low-level representations, lern the
high-level representations per task.

14.13 Dropout
Dropout idea: randomly “drop” subsets of the units in the net-
work.

So more preciely, we’ll define a “keep” probability ⇡l

i
for unit i in

layer l.

· typically: ⇡0
i
= 0.8 (inputs), ⇡l�1 = 0.5 (hidden units)

· realization: sampling bit mask and zeroing out activations
· e↵ectively defines an exponential ensemble of networks (each of
which is a sub-network of the original one), just that we sample
these models at training-time (instead of during prediction) and
we share the parameters

· all modles share the same weights
· standard backpropagation applies.
· This prevents complex co-adaptions in which a feature detector
is only helpful in the context of several other specific feature
detectors. Instead, each neuron learns to detect a feature that
is generally helpful for producing the correct answer given the
combinatorially large variety of internal contexts in which it
must operate. (Hinton et al., 2012). This enforces the features
to be redundant (not too specific about one thing in the image)
and also to build on top of all the features of the previous layer
(since we never know if some are absent).

Benefits: benefits of ensembles with the runtime complexity of the
training of one network. The network gets trained to have many
di↵erent paths through it to get the right result (as neurons are
turned o↵).

Equivalent to: adding multiplicative noise to weights or training
exponentially many sub-networks

P
n

i=1

�
n

i

�
= 2n wher n is the

number of compute units (so at each iteration we turn some nodes
o↵ according to some probability). So we’re getting the benefits of
ensembles with the runtime complexity of just training one network.

Ensembling corresponds to taking geometric mean (instead of usual
arithmetic) (must have to do with exponential growth of networks)
of the ensembles:

Pensemble (y |x) = d

qQ
µ
P (µ)P (y |x,µ)

Having to sample several sub-networks for a prediction is somewhat
inconvenient, so the idea that Hinton et al. came up with is: scaling
each weight wl

ij
by the probability of the unit j being active

w̃l

ij
 ⇡l�1

j
wij

This makes sure that the net (total) input to unit xl

i
is calibrated,

i.e.,

X

j

w̃l

ij
xl�1
j

!
= EZ⇠P(Z)

2

4
X

j

Zl�1
j

wijx
l�1
j

3

5
X

j

⇡l�1
j

wijx
l�1
j

3

It can be shown that this approach leads to a (sometimes exact)
approximation of a gemoetrically averaged ensemble (see DL-Book,
7.12).

Ex.Let’s say that at the end we selected each unit with a probabil-
ity of 0.5. Then when typically when we’re finished with training
our neural network, we’re going to multiply all the weights that we
obtained with 0.5 to reduce the contribution of each of the features
(since we’ll have all of them). So with this trick for the prediction
we can just do a single forward pass.

15 Recurrent Networks (RRNs)

Disadvantage of CNNs: need to pick right convolution size, too
small: no context, too large: a lot of data needed, anyways: loss of
memory at some point.
Advantage of RNNs: capture better the time component, lossy
memorization of past in hidden state.

Given an observation sequence x1, . . . ,xT . We want to identify
the hidden activites ht with the state of a dynamical system. The
discrete time evolution of the hidden state sequence is expressed
as a HMM with a non-linearity.

✓ = (U,W,b,V, c)

ht = F (ht�1,xt; ✓), h0 = o.

F := � � F, � 2 {logistic,tanh,ReLU,. . . }

F (h,x; ✓) := Wh + Ux + b,

yt = H(ht; ✓) := �(Vht + c),

There are two scenarios for producing outputs

1. Only one output at the end:

hT 7! H(hT ; ✓) = yT = y

And then we just pass this y to the loss R.
2. Output a prediction at every timestep: y1, . . . ,yT . And then

use an additive loss function

R(y1, . . . ,yT) =
TX

i=1

R(yT) =
TX

i=1

R(H(hT ; ✓))

· Markov Property: hidden state at time t depends on input of
time t as well as the privous hidden state (but we don’t need
the oder hidden states).

· Time-Invariance: the state evolution function F is indepen-
dent of t (it’s just parametrized by ✓).

Feedforward VS Recurrent Networks: RNNs process inputs in se-
quence, parameters shared between layers (same H and F at every
timestep).

Backpropagation in Recurrent Networks
The backpropagation is straightforward: we propagate the deriva-
tives backwards through time. So, the parameter sharing leads to a
sum over t when dealing with the derivatives of the weights:

Algorithm 2: Backpropagation in RNNs

(Blue terms only need to be comp. for multiple-output RNNs)
// Compute derivative w.r.t. outputs

Compute @R
@y1 , @R

@y2 , . . . , @R
@yT

⇣
= @L

@yi

⌘

// Compute the gradient w.r.t. all hidden states

@R
@hT

P

i

@R
@y

T

i

@y
T

i

@hT

for t (T � 1) down to 1 do

@R
@ht

P

i

@R
@h

t+1
i

@h
t+1
i

@ht
+
P

i

@R
@y

t

i

@y
t

i

@ht

// Do back-propagation over time for weights and biases

@R
@wij

P

T

i=1
@R

@h
t�1
j

@h
t�1
j

@wij
=
P

T

i=1
@R

@h
t�1
j

· �̇t

i
· ht�1

j
,

@R
@uij

P

T

i=1
@R

@h
t�1
j

@h
t�1
j

@uij
=
P

T

i=1
@R

@h
t�1
j

· �̇t

i
· xt

j
,

@R
@bi

P

T

t=1
@R
@h

t

i

@h
t

i

@bi
=
P

T

t=1
@R
@h

t

i

· �̇t

i
,

where �̇t

i
:= �0(F i(h

t�1,xt)).

@R
@vij

P

T

i=1
@R

@y
t�1
j

@y
t�1
j

@vij
=
P

T

i=1
@R

@y
t�1
j

· �̇t

i
· yt

j
,

@R
@cij

P

T

i=1
@R

@y
t�1
j

@y
t�1
j

@vij
=
P

T

i=1
@R

@y
t�1
j

· �̇t

i
,

where �̇t

i
:= �0(Hi(h

t�1,xt)).

Note that @R
@wij

P

T

i=1

P
k

@R
@h

t�1
k

@h
t�1
k

@wwij
=
P

T

i=1
@R

@h
t�1
j

@h
t�1
j

@wij
.

Since for k 6= j the summand is zero (similarly for uij and vij).

Exploding and/or Vanishing Gradients

One of the typical problems that RNNs have is that the gradients
may explode or vanish. Remember that the gradients that we with
MLPs were:

rxR = J
F1 · · · · · J

FLryR.

Since we’re sharing the parameters we have 8t : F t = F , yet evalu-
ated at di↵erent points. Now, if the sequence is very long (large
T) then we’re multiplying a lot of times the same jacobian (yet
evaluated at di↵erent points) by itself.

D. (Spectral Matrix Norm (Largest Singular Value))

kAk2 := max
x,kxk2=1

kAxk2 =: �max(A).

T.kABk2  kAk2 · kBk2.
Now, let’s have a look at the product of Jacobians for RNNs (single-
output case, otherwise it would just be a sum of longer and longer
products of Jacobians). Let’s have a look at the gradient of R
w.r.t. some input xt at iteration t: This is a good formula for
backpropagation through time!! If we did this w.r.t. the parameters
we’d have to sum it up over t = 1 to T .

r
xtR =

@ht

@xt

@ht+1

@ht

@ht+2

@ht+1
· · ·

@hT�1

@hT�2

@hT

@hT�1

@yT

@hT

@R
@yT

= Jx

F

��
xt,ht�1 Jh

F

���
xt+1,ht

· · · · · Jh

F

���
xT ,hT�1

JH |
hT ryT R.

= Jx

F

��
xt,ht�1

T�1Y

s=t

Jh

F

���
xs+1,hs

!
JH |

hT ryT R

= Jx

F

��
xt,ht

0

BB@
T�1Y

s=t

diag(�0(Whs + Uxs+1 + b))
| {z }

S
xs+1,hs

W

1

CCA JH |
hT ryT R

Note that when talking about Jh

F
we mean the Jacobian w.r.t. h

(and analogously x). We need to make this explicit, since F acutally
has two arguments. Now, the Jacobians were just computed as
follows

(JF)h
ij

���
xt,ht�1

=
@Fi

@ht�1
j

=
@ht

i

@ht�1
j

= �0(Wht�1 +Uxt +b)i ·wij

Jh

F

���
xt,ht�1

= diag(�0(Wht�1 + Uxt + b))
| {z }

=S
xt,ht�1

·W

Now, for the eigenvalues of these Jacobians, we have that

S
xt,ht�1  I (1)

if � 2 {logistic,tanh,ReLU}. Hence S
xt,ht�1 will make the gradi-

ents vanish over time (when the products gets large, so t is small)
if W doesn’t have big enough eigenvalues.

Ex.Concretely, if x := x1,x2, . . . ,xT was a movie review, then the
gradients for the first part of the review would vanish, and only the
gradients of the last part of the review would exist.

So, let’s have a look at what happens to the spectral norm of this
product of Jacobians:

�����

T�1Y

s=t

S
xs+1,hsW

�����
2

(�)


�����

T�1Y

s=t

W

�����
2

=
���WT�t�1

���
2
 kWkT�t�1

2 = �max(W)T�t�1

Now, this means that

· If �max(W) < 1, then the gradients will vanish

kr
xtRk2  C · �max(W)T�t�1 (T�t�1)!1! 0,

where C is just some constant that depends on the other matrix
and vector norms, but not on T � t.

· Conversely, if �max(W) > 1 the gradient may, or may not ex-
plode - we can’t really say something.

This was observed and published in a paper by Pascanu, Mikolov,
Bengion in 2013.

Fixing Exploding/Vanishing Gradients

· When the gradients are exploding a common heuristic is to clip
the gradients (shring the gradient norm once it gets too big),
so-called gradient clipping.

rxR rxR ·
�max

max (krxkR, �max) .

This ensures that the gradient norm is never greater than �max.
· However, when have vanishing gradients over time, then this
means that the RNN is forgetting the past after a few timesteps,
and usually then the RNN is not performing very well. This is
harder to fix, and we’ll see later how this is solved with LSTMS.
15.0.1 Backprop Over Time

For multi-output loss

L

✓
=
P

T

t=1
@Lt

@yt

@yt

@ht

P
T

`=1

hQ
T

k=`+1
@h

k

@h
k�1

i
@ht

@✓

15.0.2 Bi-Directional RNNs

So, additionally, we’re define a reverse order sequence

gt := G(xt, gt+1; ✓) = �(Pxt + Qgt+1 + d), with gT = o

the function F to compute the normal order sequence stays the
same, and the output transform H becomes now a function of both
hidden states:

yt = H(ht, gt; ✓).

The nice thing is that we can compute both sequences (the forward
and backward sequence) in parallel (or independently) - just verify
this in the graph. The back-propagation through time is done in
reverse order for the reverse order sequence.

15.0.3 Deep Recurrent Networks

Deep recurrent networks (DRNNs) just use a deeper network for
the evolution function. So we have hierarchical hidden states. Note,
that this can also be combined with bi-directionality.

ht,1 = F (ht�1,1,xt; ✓)

.

.

.
ht,l = F (ht�1,l,ht,l�1; ✓)

yT = H(yt,L; ✓).

15.0.4 Probability Distributions over Sequences
Goal: Define a conditional probability distribution over output
sequence y1:T , given input sequence x1:T .
So the idea would be to do a step-by-step prediction:

P
⇣
y1:T

���x1:T
⌘
⇡

TY

t=1

P
⇣
yt

���x1:t,y1:(t�1)
⌘

Now, in the naive RNN implementation P
�
yt
�
only depends on

y1:(t�1) through ht since

x1:t F7! hT H7! µt 7! P
⇣
yT
⌘
.

Problems when learning RNNs One of the problems that we
may have when we’re learning to predict sequences to sequences
is that the elements of the predicted sequence are somewhat un-
correlated if we don’t train the right way. Actually, it would be
better to consider what we predicted for the neighbouring elements
when predicting an element of a sequence. Further, if the prediction
was wrong it would be actually misleading, and so the error would
get propagated. A better approach to do this is to feed in the right
prediction as the neighbouring prediction during training time such
that the training and sequence doesn’t get fully of track because of
one misprediction.

D. (Teacher Forcing) That’s why output feedback was intro-
duced, with output feedback the output function takes an additional
input yt�1 (for unidirectional RNNs) such that we can consider
what the previous sequence prediction was. So

yt = H(ht,yt�1).

As we can see in the picture we feed in the true value during training,
and we use the predicted value at test time.

This technique is called teacher forcing (even if we do a wrong
prediction, we force it to be the true value).

D. (Curriculum Learning) Another related idea is curricular

learning where we alternate randomly between teacher forcing and
using the actual (and maybe wrong) prediction. So even if there
are some wrong predictions, we force the network to come to the
right prediction at some point and it may recover from the small
errors.

16 Memory & Attention

16.1 Memory Units

Problem with RNNs: vanishing gradients (changes in the input
a long time ago won’t really a↵ect the output/loss), so it’s hard
to learn long-term dependencies as the information in ht fades-out
when combined with current input xt.
Goal of Memory Units: model long-term dependencies. have
some kind of memory.

16.1.1 LSTMs
It would be nice to have something like a gated unit

D. (Gated Unit)

The following picture illustrates how we have a memory unit where
we can store, read and delete information illustrated by the gated

units.

Advantages: information can be remembered for a long time (doesn’t
fade away as with RNNs). Further, we can delete something in
memory in one timestep (without having to fade it out).

D. (LSTM) Long Short-Term Memory: Remembering information
for long time and forgetting it fast.
An LSTM is just a complex unit for memory management to achieve
these objectives. It has the following computation graph:

Now an LSTM has two memories:
· Ct is the main memory in the LSTM (a vector). That’s where we
store all of our information. The memory we’ll control through
the gated units.

· ht is our previous output. So it’s not our memory, but it’s
what the sequence model outputs at timestep t. This could then
passed further to a prediction network.

The LSTM adds three more gates. The idea is that the information
Ct flows on a conveyor-belt where we selectively forget, store and
output as follows
· Forget Gate: This is just a one-layer neural network, where

f t = �(Wfh
t�1 + Ufx

t + bf) (forget)

Using the previous output vector, and the current input it com-
putes some weights, which are used to multiply the content of the
memory (by a number between 0 and 1) in order to selectively
forget some entries in the memory.

· Store/Input Gate: Here we’ll compute

it := �(Wih
t�1 + Uix

t + bi) (input)

which determines how much we want to input into the memory
(how much we want to store). In many cases, this is just mapped
as it = 1� f t. But this model illustrates the flexibility that we
may want to keep. Further, given that we’ll be opening the gate,
what should we store there? This is what is computed through

C
t
= tanh(WCht�1 + UCxt + bC).

And in the end we’ll update the memory by combining the
weighted sums of the stored and new information

Ct = f t|{z}
forget factors

� Ct�1

| {z }
current mem

+ it|{z}
write factors

� C
t

|{z}
net in

.

· Read/Output Gate: In this gate we decide which information
that we want to get out into our output (the new hidden state):

ot = �(Woh
t�1 + Uox

t + bo) (output)

ht = ot

|{z}
what we want

to let out

� tanh(Ct

|{z}
new mem.

).

Note that when stacking ht�1 and xt we may just represent things
as follows:

[W U]
h
ht�1

xt

i
+ b = Wkht�1 + Ukxt + b.

16.1.2 Other Variants of LSTMs
LSTMs with Peepholes

There are a bunch of other LSTMs that have been invented. A
change that was done with LSTMS was: LSTS with peepholes

where each of the gates also is allowed to look at the memory (Gers
& Schmidhuber, 2000).

This makes a lot of sense if we start multiplying by a lot of zeros
when we’re carrying the information out.

Coupled Forget and Input Gates

Another variation is to use coupled forget and input gates. Instead
of separately deciding what to forget and what we should add new
information to, we make those decisions together. We only forget
when we’re going to input something in its place. We only input
new values to the state when we forget something older.

GRU Networks (Gated Memory Unit)

This is basically a simplification of the LSTM that we’ve seen where
we have only one state. Usually these ones tend to be much faster to
train. It combines the forget and input gates into a single “update
gate.” It also merges the cell state and hidden state, and makes
some other changes.

16.1.3 Unsegmented Sequences
Problem: di↵erent durations for same thing
“Theee houssse iis new.”
“The hoouse iis new.”

16.1.4 Connectionist Temporal Classification
Let’s have a look an approach with LSTMs on hwo to solve the
problem of unsegmented sequences.
The connectionist temporal classification allows to estimate the
sequences of unsegmented data:

Acutally, it’s a very simplified model (huge simplification)

P (⇡ |x) =
TY

t=1

y⇡t

where
· x is the sound that we had, segmented every few milliseconds,
· ⇡t is a distribution over all possible lables + blank. Note that a
blank doesn’t mean no sound, it means I don’t know.

So it assumes that each of the labels that we’re getting are indepen-
dent - so this is really the point where we can say that that doesn’t
make any sens! Even though it’s a huge simplification it works very
well.
The next step is to take the sequence of the predictions (if whe
have two “a” “a”, then most likely there should be just one “a” and
the next should be something that correlates to a).

So the next idea is after having the sequence ⇡1, . . . ,⇡T of predic-
tions we’ll add all the potential probabilities that actually mean
the same thing.

16.2 Di↵erentiable Memory

D. (Neural Turing Machine)

NTMs are very reminiscent of a Turing machine, but: each cell
Mi 2 Rd.

In contrast to RNNs, NTMs use an external memory to which they
read and write according to some determined probabilities.Now
here’s an example how that can become very useful. We may have
these vectors in memory, and then we may search for some vector.
The greater the dot-product is with a vector, the greater our at-
tention will be for that vector in the memory (via the attention
distribution).

So the operations that can be done are the following:

1. Compute the attention distribution: (↵i)i, ↵i � 0 s.t.
P

↵i
= 1.

2. Read: out expected memory content: r
P

i
↵iMi.

3. Write: Now, given that we have one value that we’d like to write,
we’ll write it to the memory location with the biggest attention:

(�i)i, �i 2 [0; 1], Mi (1� �i)Mi + �iw.

Usually, there’s one value where we have a lot of attention (curse
of dimensionality), and lots where we have little attention. Fur-
ther, as we can see then we’ll write a lot so somwhere and a little
bit to everywhere else. The reason we’re using a slowly varying
�i is that we want to be able to take the derivative (if it was
just 0 or 1 we couldn’t take the derivative). So this is why these
things tend to be soft.

The typical memory controller works as follows:

1. For a query vector see which memory cells get the most attention.
2. Normalize the attention distribution
3. Interpolate the attention with the previous attention
4. Convolve the the attention if needed (ability to shift attention

relative to content-selected locations)
5. additionally sharpen the final attention distribution.
6. then do your operation (read or write) according to the attention

distribution.
These operations are all di↵erentiable, as we’re using probabilities
and not only the values 0 or 1. Other resembling architectures
are: neural random access machines, di↵erentiable data structures
(stacks, queues).

Now, NTM architectures can learn loops and simple programs.
However, no real-world applications have been developed with this
so-far.

16.3 Attention Mechanisms
D. (Attention Mechanisms) o↵er a simple way to overcome
some challenges of RNN-based memorization. With attention mech-
anisms we selectively attend to inputs or feature representations

computed from inputs.
· RNNs: learn to encode information relevant for the future.
· Attention: selects what is relevant from the past in hindsight!
Both ideas can be combined!
Ex. If we have a sentence in English and one in German the question
is how do we match one to the other. The problem with CTC was
that if things are changed in order, then CTC cannot deal with it.
Because the CTC doesn’t process every input before it produces an
output. Attention will provide a mechanism to deal with this.

So we’ll see how we can do sequence to sequence learning. The
idea fairly simple: Let’s say we have a sequence ABC and we
want to map it to WXY Z. To acheve this we’ll use the so-called
encoder-decoder architecture:

So what we’ll do is
· we’ll encode the sequence (e.g., sentence) into a vector, and then
· we’ll decode the sequence (e.g., translate) from the vector (w/
output feedback) into another sequence.

So the probability that we want to determine is

P
⇣
y1, . . . ,yTy

���x1, . . . ,x
Tx , F (xTx)

⌘
.

The issue that we have here is that Tx and Ty have variable lengths,
and the di↵erence between the two lengths is not always the same.
So it’s very hard to match one sequence to another. Now, sequence
learning will compute a function

F (x1, . . . ,xTx) = “thought vector”

which will be a vector which will have all the information that
we need from the input sequence to compute the output sequence.
This F is the so-called “thought vector” (Hinton). So F will be
computed via an LSTM.
To produce the output sequence we’ll use another LSTM that takes
as input the thought vector F plus the output that we’ll be produc-
ing (output feedback).

How to make the RNN Encoder/Decoder Work?

The following things were discovered by Sutskever, Vinals & Le in
2014:
· Use Deep LSTMs (multiple layers, e.g., 4)
· Use di↵erent RNNs for encoding and decoding
· Apply beam search for decoding
· Reverse the order of the source sequence
· Ensemble-ing
For a machine translation task this gave state-of-the-art results on
WMT benchmarks. However, traditional approaches use sentence

alignment models. We still don’t know what is the equivalent in a
neural architecture.

16.3.1 Seq2Seq with Attention
The issue with the encoder-decoder architecture is that if we’re
translating a very long sequence, it might have the issue that sud-
denly we have to store the entire sequence in a single vector. But
when we as humans translate we translate small parts into small
parts. In order to understand this better let’s have a look at a
concrete example. Let’s say that we want to translate the following
sentence from English to French.

· bi-directionality (it’s good to know future and past context)
· select useful hidden states based on atention
· sizes of sentences might not be the same
· outputted workds might have slightly di↵erent order
· Note that if we don’t have dependencies that are out of order
we can use the CTC approach.

16.4 Recursive Networks
Good to process tree-structure, e.g., from a parser (more depth
e�cient O(log(n))). Gives a single output at the root.

F : Rd ⇥ Rd ! Rd

hn = F (hnleft ,hnright)

17 Unsupervised Learning

Here we’ll look at what we can say about a distribution of X, when
we have some samples x1, . . . ,xN . Unsupervised learning is the
most dangerous thing that we can do (dangerous if we don’t know
what we’re doing). Unsupervised learning usually is hard, because
we don’t have a goal. The final goal of unsupervised learning is
density estimation - so, understand the distribution that the data
is coming from. Other things we might strive for is interpretability
of the results we’ve learned about p(x). Another key aspect of
unsupervised learning is: “I don’t know what I’m looking for until
I find it.”

17.1 Density Estimation

D. (Density Estimation) is a standard problem in statistics and
unsupervised learning. It’s used to learn the distribution of the
data. Classically, we use a parametric family of densities

{p✓ | ✓ 2 ⇥}

to describe the set of densities that we may model. Usually, the pa-
rameters are stimated with MLE (expectation w.r.t. the empirical
distribution)

✓⇤ = argmax
✓

Ex⇠pemp. [log(p✓(x))] .

However, real data is rarely gaussian, laplacian, . . . e.g., images. So
the fact that in general we cannot solve for p✓ for a parametric
function makes this task quite complicated.

So when using a prescribed model p✓ we have to
· ensure that p✓ defines a proper density:

Z
p✓(x) dx = 1.

· and to be able to evaluate the density p✓ at various sample
points x
· this may be trivial for models such as exponential families
(simple formulas)

· but impractical for complex models (Markov networks, DNNs)

Now, the question is what strategies can we use for more complex
models.
A typical example for an non-parametric and unnormalized model
is kernel-density estimation.

D. (Kernel Density Estimator) Let x1, . . . ,xn be a sample,
and k a kernel with bandwidth h > 0 then the estimator is defined
as:

p
✓
(x) =

1

n

nX

i=1

kh(x� xi) =
1

nh

nX

i=1

k

✓
x� xi

h

◆
.

The problem with this is that the rate of convergence is log(log(n))
- this is extremely painfully slow. This is just a guarantee in general
when we know nothing about our density.

An alternative is to use unnormalized models (non-parametric:
the number of parameters depends on dataset size). These then
represent improper density functions:

p
✓
(x)

| {z }
represented

= c✓|{z}
unknown

· p✓(x)| {z }
normalized

.

Finding the normalization constant c✓ might be really complicated,
so we can only evaluate relative probabilities. Further, here we
cannot use the log-likelihood, because scaling up p

✓
leads to an

unbounded likelihood.
So the question still is: is there an alternative estimation method

for unnormalized models?
What we do in practice is we do not look for the exact p✓, but we
look for properties of p✓. In many cases these properties depend
on our prior knowledge of p✓. We need to understand what the
problem is in order to put the prior knowledge into the model that
we want to do. This was already important in supervised learning
(e.g., CNNs with several layers for images), and is even more im-
portant in unsupervised learning. We have to do the same thing
there without knowing what our final goal is.

Finally, Hyvarinen came up with the following idea in 2005. He
asked himself whether there’s an operator that we can apply to
p
✓
that does not depend on normalization. - The answer was yes!

Instead of estimating p✓, we estimate log p✓.

D. (Score Matching (Hyvarinen 2005))

 ✓ := rx log p
✓
, = rx log p

Minimize the criterion

J(✓) = E [k ✓ � k]2

or equivalently (by eliminating by integration by parts)

J(✓) = E
"
X

i

@i ✓,ı �
1

2
 2

✓,i

#
.

This expectation can be approximated by sampling.

The main problem with this is that it assumes that the two normal-
ization constants are the same!

17.2 Autoencoders

Given: data points {x1, . . . ,xn} ⇢ Rd

Goal: Compress the data into m-dim. (m  d) representation.

D. (Autoencoder) any NN that aims to learn the identity map.

R(✓) =
1

2n

nX

i=1

kx� F✓(x)k22 = Ex⇠pemp [`(x, (H �G)(x))]

`(x, x̂) =
1

2
kx� x̂k22

Typically, the network can be broken into two parts G and H such
that
· F = H �G ⇡ x 7! x
· Encoder : G = Fl � · · · � F1 : Rn ! Rm, x 7! z = xl

· Decoder : H = FL � · · · � Fl+1 : Rm ! Rn, z 7! y = x̂.
· layer l is usually a “bottleneck” layer.
Com. Just a special case of a feedforward NN, that can be trained
through backpropagation.

Autoencoders provide a canonical way of representation learning

(since NNs naturally do this). Note, how the data compression
(learning compressed representation) is just a “proxy” and not the
real learning objective of the network (identity function).

1
7
.3

F
a
cto

r
A
n
a
ly
sis

2
1

G
R
A
P
H

C
O
N
V
O
L
U
T
IO

N
A
L

N
E
T
W

O
R
K
S

17.2.1 Linear Autoencoding

D. (Linear Autoencoder)

A linear autoencoder just consists of two linear maps: an encoder
C 2 Rm⇥d and a decoder Dd⇥m. The objective it minimizes is
then:

R(✓) =
1

2n

nX

i=1

kxi �DCxik22 .

So it’s a NN with one hidden layer (no biases and linear activa-
tion functions) which will contain the compressed representation
z = Cx 2 Rm.

D. (Linear Autoencoder with Coupled Weights)

Then, we define D := CT.

D. (Singular Value Decomposition)

Recall that the SVD of a data matrix

X =

2

64x1 x2 · · · xk

3

75

is of the following form:

X = U
n⇥n

diag†(�1, . . . ,�min(n,k))| {z }
=:⌃2Rn⇥k

VT

k⇥k

.

And the matrices U and V are orthogonal - so we have an orthogo-
nal basis. Further recall that via the SVD we can get the best rank
k approximation of a linear mapping. It also is a decomposition
that preserves as much of the variance (or energy) of the data for a
predefined number of desired basis vectors to represent it.

Optimal Linear Compression

T. (Eckhart-Young) For m  min(n, k) and the objective

argmin
X̂ : rank(X̂)=m

���X� X̂
���
2

F

= Umdiag(�1, . . . ,�m)VT
m

where the subscript m refers to the matrices of the SVD pruned to
m columns.
C.This means that a linear auto-encoder with m hidden units
cannot improve the SVD since rank(CD)  m. However, the
auto-encoder can achieve the result of the SVD.

T.Given the SVD of the data X = Udiag(�1, . . . ,�n)V
T. The

choice C = UT
m

and D = Um minimizes the squared reconstruction
error of a two-layer linear auto-encoder with m hidden units.
Proof.

DCX = UmUT
m
U⌃VT = Um [Im 0]⌃VT = Um [⌃m 0]VT = Um⌃mVT

m
.

And as we know from the Eckhart-Young theorem X̂ = Um⌃mVT

m

is the best m-dimensional approximation of the original data X.

Now, since C = UT
m

and D = Um that means that we can do
weight sharing between the decoder and encoder network, since
C = DT.
Another thing to note is that the solution is not unique! For any
invertible matrix A 2 GL(m) we have

(UmA�1)
| {z }

D̃

(AUT
m
)

| {z }
C̃

= UmUT
m

Now, restricting through weight sharing that D = CT will enforce
that

A�1 = AT

hencem A 2 O(m) (orthogonal group, rotation matrices). Then
the mapping x ! z is determined (up some rotation that we do
in-between, rotation and its inverse).

Principal Component Analysis
A way to solve this problem is through PCA. First, we center the
data (pre-processing) as follows:

xi 7! xi

kX

i=1

xi

Then we define
S := XXT

which is the sample covariance matrix. And then, in order to get
U we just do the singular value decomposition of S. If we relate it
to the SVD of X we can see that

S = U⌃VTV⌃UT = U⌃2UT.

So, the column vectors of U are the eigenvectors of the covariance
matrix. And UmUT

m
is the orthogonal projection onto m principal

components of S.
Note that if we wanted to get V the we’d just do the PCA with
S = XTX.

17.2.2 Non-Linear Autoencoders
Non-linear autoencoders allow us to learn powerful non-linear gen-
eralizations of the PCA.

D. (Non-Linear Autoencoder) contains many hidden layers
with nonlinear-activation functios as we want (as long as there’s a
bottleneck layer) and train the parameters via MLE.

17.2.3 Regularized Autoencoders

One may also regularize the code z via a regularizers ⌦(z). This
will give us a regularized autoencoder.
There are various flavours of regularization:
· standard L2 penalty: ability to learn “overcomplete” codes
· D. (Code Sparseness) e.g., via ⌦(z) = � kzk1
· D. (Contractive Autoencoders) ⌦(z) = �

�� @z

@x

��2
F
. This pe-

nalizes the Jacobian and generalizes weight decay (cf. Rifai et
al, 2011)

17.2.4 Denoising Autoencoders
Autoencoders allso allow us to separate the signal from noise: De-
noising autoencoders aim to learn features of the original data
representation that are robust under noise.

D. (Denoising Autoencoder) we perturb the inputs

x 7! x⌘,

where ⌘ is a random noise vector, e.g., additive (white) noise

x⌘ = x + ⌘, ⌘ ⇠ N (o,�2I)

and instead of the original objective, we minimize the following

Ex [E⌘ [`(x, (H �G)(x⌘))]]

The hope is that we’ll achieve de-noising, which happens if

kx�H(G(x⌘))k2 . < kx� x⌘k2

So this would mean that the reconstruction error of the noisy data
is less than the error we created by the noise we’ve added (then the
de-noising works).

17.3 Factor Analysis
17.3.1 Latent Variable Analysis

Latent Variable Analysis provides a generic way of defining proba-
bilistic, i.e., generative models - the so-called latent variable models.
They usually work as follows

1. Define a latent variable z, with a distribution p(z)
2. Define conditional models for the observables x conditoned on

the latent variable: p (x | z)
3. Construct the observed data model by integrating/summing out

the latent variables

p(x) =

Z
p(z)p (x | z) µ(dz) =

⇢R
p(z)p (x | z) dz, µ = LebesgueP
z
p(z)p (x | z) , µ = counting

Ex. (Gaussian Mixture Models GMMs)

z 2 {1, . . . , K}, p(z) =mixing proportions

p (x | z) : conditional densities (Gaussians for GMMs)

The idea of latent variable models is very similar to the one of
autoencoders. The idea is to have some

· x 2 Rd

· and we want to embed it into Rk (k ⌧ d)
· so we’ll use z 2 Rk (latent-space)
· and look at the conditional probabilities p (x | z) for some x

Depending on whether z is continuous (e.g., as with PCA) or dis-
crete random variable (e.g., GMMs) we’ll be using the Lebesgue
integral or counting to integrate/sum it out.

A typical approach to for latent variable models is linear factor

analysis.
Linear Factor Analysis

The idea of linear factor analysis is to explain the data through some
low-dimensional isotropic gaussian. And the data is mapped/recon-
structed through some linear map to/from the lower-dimensional
space. The reconstruction is done via a linear map W and then
di↵erent gaussian noises are added to the reconstructed vector (via
⌘).

So the latent variable prior is z 2 Rm where

z ⇠ N (o, I)

and we have a linear observation model for x 2 Rn

x = µ + W
n⇥m

z + ⌘, ⌘ ⇠ N (o,⌃), ⌃ := diag(�2
1 , . . . ,�

2
n
)

Further note that
· µ and z are independent

· typically m⌧ n (fewer factors than features)
· so few factors account for the depencencies between many ob-
servables

· The vector µ is computed through MLE on the training set

µ̂ =
1

k

kX

i=1

xi

Usually we assume centered data, so µ = o. Since µ only
complicates the notation and is actually easy to determine.

Recall, that in the previous part when we were doing autoencoders,
the deviations that we were having for each of the components was
the same one . So we wanted the error to be the same for each of
the components. Now, with this model, with ⌘ we’re allowing for
additional flexibility for the error. There will be some components
that we’ll be able to explain with less error, and some with more.
So, z shoud capture everything that is important to explain the
data, and ⌘ can be viewn as noise.
Altough we’re assuming that here everything is gaussian, in general
we may view z as a clustering mechanism, where z determines some
cluster components that are selected.

T.The distribution of the observation model is

x ⇠ N (µ,WWT + ⌃).

Proof. This can be proven in three steps
1. We use the insights on MGFs of and their properties.
2. We use the insights on MGFs of multivariate normal distributions
3. Then the proof is straightforward.
If you need some refresher of some core definitions just have a look
at them (after the proof).

Let ex := Wz s.t. x = µ + ex + ⌘. Now let’s determine the MGF of
ex:

Mex(t) = Eex

et

Tex
�
= Ez


et

T
Wz

�
= Ez


e

⇣
W

T
t

⌘T
z

�
= Mz(W

Tt).

Now, since z ⇠ N (o, I) and we know the form of a MGF of a normal
distribution, we can just plug in:

Mz(W
Tt) = exp

✓
1

2
(WTt)TI(WTt)

◆
= exp

✓
1

2
tT(WWT)t

◆
.

So this gives us

Mex(t) = exp

✓
1

2
tT(WWT)t

◆
.

which btw shows us that ex = Wz ⇠ N (o,WWT).

Now, we defined that x = ex + ⌘ + µ. Now, in order to determine
the distribution P (x), we can just use the fact that the MGF of the
addition of two or more random variables is just the multiplication
of their MGFs. So,

Mx = Mex+⌘+µ

= Mex · M⌘ · Mµ

= exp

✓
1

2
tTWWTt

◆
exp

✓
1

2
tT⌃t

◆
exp

⇣
tTµ

⌘

= exp

✓
tTµ +

1

2
tT(WWT + ⌃)Tt

◆
.

From the form of the MGF Mx we can conclude that

x ⇠ N (µ,WWT + ⌃).

⇤
Non-Identifiability of Factors

Now this seems to be nice, but again we have the non-identifiability

problem, since there exist an infinite amount of solutions for any
W that is a solution. Just let Q be an orthogonal m⇥m-matrix.
Then WQ is also a solution, because

(WQ)(WQ)T = WQQTWT = WWT.

The consequence of this is that the factors of the linear factor
analysis are only identifieable up to some rotations/relfections in
Rm. Since we care what the factors in z mean we need to factor the
rotations to get a better “interpretability” of the representation of
the data in the latent space.

Data Compression View
Now, how is the factor analysis related to data compression?
Encoder Step: Implicitly defined by posterior distribution

p (z |x) =
p (x | z) p(z)

p(x)
(Bayes)

One can prove that the posterior also follows a normal distribution
(see http://cs229.stanford.edu). So,

p (z |x) = N (z;µz|x,⌃z|x),

where

µz|x = WT
⇣
WWT + ⌃

⌘�1
(x� µ)

⌃z|x = I�WT
⇣
WWT + ⌃

⌘�1
W

Further, if we assume that ⌃ = �2I and we let �2 ! 0 (the
reconstruction-error-variance for all the components is the same
and we let the reconstruction error go to zero), then the following
expression just reduces to the pseudo-invers:

WT
⇣
WWT + �2I

⌘�1 �
2!0! =: W† 2 Rm⇥n.

Consequently with the assumption of zero reconstruction error:

µz|x !W†(x� µ)
⌃z|x ! 0

So, if we know W and ⌃ is assumed to be isotropic with the error
going to zero the encoding distribution gets very easy to compute.

Maximum Likelihood Estimation
Now, how do we estimate W and ⌃? The idea is fairly simple.

Let’s assume that x1, . . . ,xk

i.i.d.⇠ N (0,A). Further let’s define the
data matrix X as

X =

2

64x1 x2 · · · xk

3

75

and the empirical co-variance matrix as

S :=
1

k

kX

i=1

xix
T
i
=

1

k
XXT.

Then, the log-likelihood of the data X, given A can be written as:

log (P (X;A)) = �
k

2

⇣
Tr
⇣
SA�1

⌘
� log (det(A))

⌘
+ const.

i.T. of A

Note: this can be verified by using the definition of S, the cyclic
property of the trace, and then just write down the matrix-product
as block-matrices and see what is the diagonal of the resulting
matrix.

Now, let’s compute the matrix gradients w.r.t. A to know the
equations that we need to compute the maximum likelihood:

rATr
⇣
SA�1

⌘
= �A�1SA�1

rA log (det(A)) = A�1

Now, setting the gradient of the log-likelihood to zero gives us the
following condition:

rA log (P (X;A))
!
= 0 () SA�1 = I.

So, the MLE for A is just A = S.
But recall, that what we want is not A, but we want W and ⌃.
However, we know that A is just the empirical covariance matrix,
and W will be the mapping to the low-dimensional space and ⌃ is
the reconstruction error.

A = WWT + ⌃

Now, using the chain rule we get:

rWA = 2W
r⌃A = I

This gives us the following stationary condition for W given ⌃

S(⌃ + WWT)�1W = W.

In general, finding W is not easy. However, a special case is if we
assume that ⌃ = �2I (isotropic reconstruction error/noise) and
WTW = diag(⇢2

i
), then by Woodbury’s formula we have simplifies

to: ⇣
�2In + WWT

⌘�1
W = Wdiag(

1

�2 + ⇢2
i

).

Putting this back into the stationary condition, for each column
wi of W we get an eigenvector equation:

Swi = (�2 + ⇢2
i
)wi SW = diag(�)W.

Then, if ui is the i-th eigenvector of S, then

wi = ⇢iui, ⇢2
i
= max

n
0,�i � �2

o
.

This gives us the probabilistic interpretation PCA and showed us
how we can derive the PCA as a special case for �2 ! 0 (Tipping
& Bishop, 1999).

Refresher on MGFs and Gaussians
D. (Moment Generating Function (MGF)) The MGF MX of
a random vector X 2 Rn is defined as

MX : Rn ! R
t 7! EX


et

TX
�
.

The reason MX is called moment generating function is be-
cause it represents the moments of x in the following way: Let
k1, . . . , kn 2 N, then

EX

h
x
k1
1 x

k2
2 · · · xkn

n

i
=

@k

@t
k1
1 @t

k2
2 · · · @tkn

n

MX

�����
t=o

.

T. (Uniqueness Theorem) If MX and MY exist for the RVs X
and Y and MX = MY then 8t : P (X = t) = P (Y = t) (distribu-
tions are the same).

Now, every distribution has its unique kind of MGF form. Hence,
MGFs can be very useful to deal with sums of i.i.d. random

variables:
T. If X,Y are i.i.d. then MX+Y = MX · MY .

D. (Multivariable Normal Distribution)

X ⇠ N (µ,⌃), X 2 Rn

µ = E [X] (mean)

⌃ = E
h
(x� µ)(x� µ)T

i
(variance-covariance matrix)

PDF:

p(x;µ,⌃) =
1

p
(2⇡)n · det(⌃)

e�
1
2
(x�µ)T⌃

�1(x�µ)

MGF:

MX(t) = exp

✓
tTµ +

1

2
tT⌃t

◆

17.4 Latent Variable Models
17.4.1 DeFinetti’s Theorem

There’s another way of at looking at latent variable models which
is by the DeFinetty exchangeable theorem from the 1930s. This is
one of the foundations of Bayesian probability (although there is
nothing Bayesian in this theorem).

T. (DeFinetti’s Theorem) For exchangeable data (order of
dataset doesn’t matter and they come from the same distribution),
we can decompose the data by a latent variable model

P (x1,x2, . . . ,xN) =

Z NY

i=1

p✓ (xi | z) p✓(z) dz.

We expect that those hidden variables are: interpretable and ac-
tionable and even show causal relations.
Later we’ll put our Bayesian priors into the distributions P (z) and
we then hope that the latent structure will tell us something about
the data that we didn’t know before.
The follwing paragraph of a paper shows why interpretability is
important:

F. Doshi-Veletz et al. (NIPS 2015)

“Objectives such as data exploration present unique challenges and
opportunities for problems in unsupervised learning. While in more
typical scenarios, the discovered latent structures are simply re-
quired for some downstream task – such as features for a supervised
prediction problem – in data exploration, the model must provide
information to a domain expert in a form that they can readily
interpret. It is not su�cient to simply list what observations are
part of which cluster; one must also be able to explain why the
data partition in that particular way. These explanations must
necessarily be succinct, as people are limited in the number of
cognitive entities that they can process at one time.”

17.4.2 Latent Variable Models
Classically we define complex models via the marginalization of a
latent variable model

p✓(x) =

Z
p✓(x, z) dz or p✓(x) =

X

z

p✓(x, z)

17.4.3 Dimensionality Reduction
One of the recurring things that we see in all of these models is
dimensionality reduction. So we have that

X = f(ZB)

where
· X is N ⇥D,
· Z is N ⇥K,
· B is K ⇥D, and
· K ⌧ D.
So we have the data X that we’re trying to understand. We’ll try
to understand this data by a tall matrix Z and a fat matrix B. The
tall matrix are the latent factors that we’ve talking about (how do
we summarize the information of each sample). And the matrix B
is telling us how we can recover the original data from the summary.
Most of the unsupervised algorithms can be captured in this general
framework.
Depending on f(·) and Z and B, we arrive at di↵erent models:

· Principal Component Analysis / Factor Analysis
(f linear)

· Nonnegative Matrix Factorization
(f “psomolu” or Bernoulli model, and bot Z and B have to be a
nonnegative matrix).

· LLE/Isomap/GPLVM (here we also try to do PCA or Factor
analysis with nonlinear components (with p.w. linear compo-
nents))

· Restricted Boltzmann Machine
(the idea is that Z is discrete)

· Dirichlet Process (aka Chinese Restaurant Process)
· Beta Process (aka Indian Bu↵et Process)
· Implicit Models (e.g., Generative Adversarial Networks)
(here all the information is moved to the function f instead of
computing the matrices B and C)

17.4.4 Implicit Models
Here we develop statistical models via: generating stochastic mech-

anism or simulation process.
Deep implicit models

· latent code z 2 Rd, z ⇠ ⇡(z), e.g. ⇡(z) = N (o, I)
· parametrized mechanism: F✓ : Rd ! Rm

· induced distribution x 2 Rm, x ⇠ p✓(x)
· sampling is easy: random vector + forward propagation.
.

18 Chain-Rule and Jacobians for Tensors
D. (k-Dimensional Tensor) T 2 Rd1⇥d2⇥···⇥d

k

D. (Tensor Multiplication)

T
2R(a+c)

= P
2R(a+b)

⇥b Q
2R(b+c)

T
r1⇥···⇥ra⇥s1⇥···⇥sc

= P
r1⇥···⇥ra⇥s1⇥···⇥s

b

⇥s1,...,s
b

Q
s1⇥···⇥s

b
⇥t1⇥···⇥tc

where each entry of T is computed as follows:

Ti1,...,ia,k1,...,kc
:=
P

j1,...,j
b
Pi1,...,ia,j1,...,j

b
Qj1,...,j

b
,k1,...,kc

Note that this is just the sum of the multiplications of two numbers
which are in corresponding locations in P and Q. Essentially, it’s
the dot product across the dimensions s1, . . . , sb.
Note how this tensor-tensor-multiplication is isomorphic to some
matrix-matrix product:

Ti1, . . . , ia| {z }
“i”

,k1, . . . , kc| {z }
“k”

:=
X

j1, . . . , jb| {z }
“j”

Pi1, . . . , ia| {z }
“i”

,j1, . . . , jb| {z }
“j”

Qj1, . . . , jb| {z }
“j”

,k1, . . . , kc| {z }
“k”

T. (Tensor Chain Rule)

y(W) : Rd1⇥d2 ! Rd3⇥d4 , L(y) : Rd3⇥d4 ! R
@L

@W
= @L

@W
⇥d3,d4

@y

@W
then we have: Ti,j,k,l =

@yi,j

@W
k,l

19 Generative Models

In unsupervised learning our goal is to learn some underlying hidden
structure of the data (clustering, dimensionality reduction, feature
learning, density estimation). Now, generative modeling has the
following goal:
Goal: given data D, generate new samples from the same distribu-
tion pdata. We want to learn pmodel similar to pdata.
The nice thing is that the traning data is cheap, as we need no
labels. However, it’s a hard task.
In some way or another, any generative model has to cope with
density estimation (which is the hard task). This problem is tackled
in di↵erent ways by the several flavours of generative models:

· explicit density estimation: explicitly define and solve for
pmodel(x)
· tractable we can comute pmodel(x)
· approximate we approximate pmodel(x) in some way

· implicit density estimation: learn a model that can sample
from pmodel(x) without explicitly defining it.

19.1 Variational Autoencoders (VAEs)

Relation to Autoencoders
Recall, that with autoencoders, we had defined a concatenation of

two di↵erentiable (non-linear) mappings x
E7! z

D7! bx (an encoder E
and a decoder D) and trained it with the following loss kx� bxk22
(approximating identity function) in order to learn some compressed
representation z of x which just contains the essence of x according
to some meaningful feature-dimensions.
Further, we could then use E to bootstrap a classification model, by
first applying E, and then a classification network C and fine-tuning
them jointly on the cross-entropy loss.
So the lower-dimensional features z capture the factors of variation
in the data. And we can reconstruct an x from its compressed
representation x.

Ex. (E11P2)

1. VAE vs. AE : Autoencoders (compression)
· Two step data compression

· f � g where f : Rd
0
! R, encoder; g : Rd ! Rd

0
decoder;

d0 << d.
· z := g(x) low-dim. encoding of x.
· data-space metric �(x, f �g(x)) (such as Euclidean distance is
used to setup an optimisation problem to learn the parameters
of f and g).

· cannot generate data
VAE (data generation)
· cast data generation as a two-step procedure through marginal-
isation of the latent code z via p(x) =

R
p(x|z)p0(z)dz. Due

to their probabilistic formulation, VAE allow to generate data
x by performing ancestral sampling z ⇠ p0(z), x ⇠ p(x|z).

· The ELBO formulation allows us to replace the true unknown

posterior p(z|x) by an inference network (encoder) q(z|x).
· VAEs are rarely if ever used as a compression tool; the in-
ference networks (encoder) is typically thrown away after
training and their main purpose is generation.

2. You are training a VAE and observe that KL(q�(z|x)||p0(z)) ⇡ 0.
What are the consequences? What could cause such a scenario?
· Posterior Collapse (encoder): If the inference model q�(z|x)
collapses to the prior during training, the latent code z will
be independent of the data, hence we force p to explain every
x with every z.

· The reasons for posterior collapse are still being discussed
very actively, e.g. non-autoregressive (text domain) less prone
to collapse.

· Counter measures (posterior collapse): (a) re-weighing the
KL-term, (b) annealing schedules.

3. Let us assume you can compute KL(q�(z|x)||p✓(z|x)) on your
trained VAE and you find out that KL(q�(z|x)||p✓(z|x)) ⇡ 0.
What does this imply about the quality of the generative model?
· Tightness of the bound (encoder): The tightness of the bound
is important if a latent model is compared to a non-latent
probabilistic model for which the exact likelihood is available.

· The goal of variational training is to minimise the bound, not
to make it tight.

· Tightness of the bound does not certify a good generative
model. E.g. we can get a tight bound if p0, p✓, q� are appro-
priate conjugate Gaussians, yet Gaussian generative models
are usually not the powerful generative models we are looking
for.

Now the question is can we us a similar kind of setup to use new
images?

VAEs define an intractable density function pmodel(x) with a latent
z. Having this latent variable allows us to build a network similar
to an autoencoder. A tractable lower bound for the intractable
density function is then derived and optimized.

pmodel(x) := p✓(x) =
R
Z p✓(z)| {z }

“latent representation”
sample from prior

(simple, e.g., MV-Gaussian)

“Decoder”
sample from conditional

(complex NN)z }| {
p✓ (x | z) dz

With VAEs we assume that our data is generated from some un-
derlying unobserved representation z. We first sample z and then
generate some x from the conditional distribution. Now, we just
have to learn the parameters ✓ that maximize the likelihood of the
training data. Unfortunately, we cannot optimize the likelihood of
our model for the data directly (as it’s intractable).R
Z p✓(z)p✓ (x | z) dz intractable!, tractable

Note that di↵erent factorizations of the distributions would also
intractable

p✓ (z |x) =
p
✓
(x | z)p

✓
(z)

p
✓
(x)

Now, the solution to this is that in addition to the decoder net-
work modeling p✓ (x | z), we define an additional encoder network
q� (z |x) that approximates p✓ (z |x).

q� (z |x) ⇡ p✓ (z |x) =
p
✓
(x | z)p

✓
(z)

p
✓
(x)

This will allow us to derive a lower bound on the data likelihood
that is tractable, which we can optimize.

A common way to define these distributions is as follows: We as-
sume the latent variable to follow a multivariate gaussian (assumed
to be a reasonable prior for latent attributes).

Prior: z ⇠ N (o, I).

Enc. Netw. E: models q� (z |x) with params � and maps

x
E7! (µz|x,⌃z|x)

Dec. Netw. D: models p✓ (x | z) with params ✓ and maps

z
D7! (µx|z,⌃x|z)

Note that we use both diagonal covariance matrices for ⌃z|x and
⌃x|z. So the output of both networks are just two vectors (one for
mean, other for diagonal).

Com. Encoder and decoter netw. also called “recognition/inference”
and “generation” networks.

Now, equipped with our encoder and decoder networks, we can
rewrite the data (log) likelihood as follows (note that we omit the
product for all points - you’d just have to put a sum over all the
instances in front of everything)

log(p✓(x)) = Ez⇠q
�
(z | x) [log(p✓(x))] (log(p✓(x)) does not depend on z)

= Ez


log

✓
p✓ (x | z) p✓ (z)

p✓ (z |x)

◆� ✓
Bayes Rule, p✓(z|x) =

p✓(x|z)p✓(z)

p✓(x)

◆

= Ez


log

✓
p✓ (x | z) p✓ (z)

p✓ (z |x)
q� (z |x)
q� (z |x)

◆�
(Muliply by 1)

= Ez [log (p✓ (x | z))]� Ez


log

✓
q� (z |x)
p✓ (z)

◆�
+ Ez


log

✓
q� (z |x)
p✓ (z |x)

◆�

= Ez [log (p✓ (x | z))]
| {z }

(1)

�KL(q� (z |x) , p✓ (z))
| {z }

(2)
| {z }

L(x,✓,�)

+KL(q� (z |x) , p✓ (z |x))
| {z }

(3)�0

(1) Decoder network gives us p✓ (x | z) and we can compute esti-
mates of this term through sampling. (Sampling di↵erentiable
through reparametrization trick!)
This term ensures that we reconstruct the data well.

(2) This KL term (between Gaussians for encoder and z prior) has
a nice closed-form solution.
This term ensures that the approximate posterior distri-
bution is close to prior.

(3) p✓ (z |x) is intractable (as seen earlier). But we know that the
KL-divergence is � 0.

Now what we have is a tractable lower bound L (so-called vari-
ational lower bound, or evidence lower bound “ELBO”) for the
likelihood
L(x, ✓,�)  log(p✓(x))

and we can take its gradient to optimize:

(✓⇤,�⇤) = argmax(✓,�)

P
n

i=1 L(x(i), ✓,�).

Reparametrisation Trick
The reparametrisation trick is needed to be able to backprop through
a random node, as backprop cannot flow through a randomly drawn
number.

z ⇠ N (µ,�I) , z = µ + � � ", " ⇠ N (0, I)
z ⇠ N (µ,RR>) , z = µ + R"

Forward Pass and Backpropagation

So, first we do the whole backpropagation. And then we just com-
pute the updates to the parameters ✓ and � via backpropagation.

Generating Data Here we just sample from the prior, and pass
it through the decoder network to get the posterior distribution’s
parameters, then we sample from that one.

19.2 Deep Latent Gaussian Models

19.3 Generative Adversarial Networks (GANs)

GANs do not try to model a density function but directly aim to
build a function to generated data (implicit generative method).
The whole optimization motivated by a game-theoretic approach
in a 2-player game. GANs sample from a simple random noise
distribution and try to learn a transformation (via a NN) to a data
distribution.

D. (Discriminator D) must be a di↵erentiable function
parametrized by ✓d

x
D7! P (x comes from true data distr.) 2 [0, 1]

D. (Generator G) must be a di↵erentiable function parametrized
by ✓g

z ⇠ N (µ,⌃)
G7! x (one falsified data sample) (one may also use

another prior)

z is sampled from the prior distr. over latent vars (source of ran-
domness)

D tries to make D(G(z)) near 0 (for fake data)

D tries to make D(x) near 1 (x sampled from true data)

G tries to make D(G(z)) near 1

Com. In some sense G implicitly tries to make D(x) near 0 (since it
uses the negative loss of D) see Minimax game VS Non-Saturating
game.

Minimax Game: Both D and G try to minimize and maximize
the same value function:

V (G,D) = min
G

max
D

R(D)

= min
✓g

max
✓
d

Ex⇠pdata

⇥
log(D✓

d
(x))

⇤
+ Ez⇠p(z)

h
log(1�D✓

d
(G✓g

(z)))
i

R(D) = � 1
2Ex⇠pdata

[log(D(x))] �
1
2 Ez⇠N(µ,⌃) [log(1�D(G(z)))]
| {z }

=Ex⇠pgenerator [log(1�D(x))]

R(G) = �R(D)

· The loss R(D) is simply the cross-entropy between D’s predic-
tions and the correct labels in the binary classification task
(real/fake)

· The equilibrium of this game is saddle point of the discriminator
loss

· If we look for this equilibrium the whole procedure resembles
minimizing the Jensen-Shannon divergence between the true
data distribution and the generator distribution.

· So G minimizes the log-probability of D being correct

What is the solution D(x) in terms of pdata and pgenerator

at the equilibrium?
In the equilibrium it must hold that the gradient of the discrimi-
nator is zero, because the discriminator otherwise would improve
(thus change) itself.

@R(D)

@D(x) = � 1
2Ex⇠pdata

h
1

D(x)

i
+ 1

2Ex⇠pgenerator

h
1

1�D(x)

i
!
= 0

() Ex⇠pdata

h
1

D(x)

i
= Ex⇠pgenerator

h
1

1�D(x)

i

()
R
X pdata(x)

1
D(x) dx =

R
X pgenerator(x) 1

1�D(x) dx

Recall: we can get rid of the integral as it is just a function opera-
tor. Using the inverse of the operator, we can get rid of it and the
solution constraints on the optimal D(x) still remain the same.

() pdata(x)
1

D(x) = pgenerator(x) 1
1�D(x)

Then we get the following stationarity condition: The optimal D(x)
for any pdata(x) and pgenerator(x) is always

D(x) =
pdata(x)

pdata(x)+pgenerator(x)

Note that by stationarity condition we mean that this must hold
in the Nash equilibrium (where both players stop adapting them-
selves).

Estimating this ratio using supervised learning is the key approxi-
mation mechanism used by GANs.
What assumptions are needed to obtain this solution?
We need to assume that both densities are nonzero everywhere. If
we don’t make this assumption then there’s this issue that the dis-
criminator’s input space might never be sampled during its training
process. Then these points would have an undefined behaviour
since they’re never trained.

Training Procedure: Use SGD-like algorithm of choice (ADAM)
on two minibatches simultaneously. At each iteration, we choose:
· a minibatch of true data samples
· a minibatch of noise vectors to produce minibatch generated
samples

Then compute both losses and perform gradient updates.

✓t+1
d
 ✓t

d
� ⌘tr✓

d
R(D)(✓d)

✓t+1
g
 ✓t

g
� ⌘tr✓g

R(G)(✓g)

Optional: run k � 1 update steps of D for every iteration (and only
1 update step for G).

So we alternate between
· Gradient ascent on D
max✓

d
Ex⇠pdata

⇥
log(D✓

d
(x))

⇤
+

Ez⇠p(z)

h
log(1�D✓

d
(G✓g

(z)))
i

· Gradient descent on G
min✓g

Ez⇠p(z)

h
log(1�D✓

d
(G✓g

(z)))
i

Note that this training algorithm uses a heuristically motivated loss
(that is a bit di↵erent) for the generator to have better gradients
when the discriminator is good:

What prevents the generator from just learning about one specific
true image and then constantly outputting it? (as it would be
indistinguishable)

If we’re able to correctly play the Minimax game then G is not able
to consistently fool D by always generating the same sample. D
would learn to recognize that sample and reject it as fake.

Improvements of this model could use importance sampling in both
latent and true data space to improve G.

Non-Saturating Game
Here we change G’s loss as follows

R(G) = � 1
2Ez⇠N(µ,⌃) [D(G(z))] .

Hence the equilibrium is no longer describable with a single loss.
Now the generator just maximizes the log-probability of the dis-
criminator being mistaken. Heuristically motivated: G can still
learn even when D successfully rejects all generator samples.
The problem with the Minimax game is that when D becomes to
smart, the gradient for G goes away.

Ex. (E11P3)

1. Describe the mode collapse problem of GANs.
· Mode Collapse: The failure of the generator to produce vari-
ety/diversity of samples, by collapsing many values of z to the
same x, is referred to as the mode collapse problem (partial
collapse often happens in practise).

2. GANs are typically trained by taking a single (or a few) update
steps for the discriminator in the inner loop and a single (or a
few) update steps for the generator in the outer loop. Explain
what would happen if we trained the discriminator in the inner
loop to optimality.
· Training the discriminator to optimality: If the discrimina-
tor becomes too strong, the gradient of the generator vanishes
(becomes 0). As a result there is no learning signal for the
generator.
To prevent this from happening, balance between the two
players needs to be maintained (e.g. through regularisation).

3. GANs are mostly successful for generating images. What is the
challenge of applying GANs to discrete data?
· GANs for discrete data: For the GAN framework to work, we
need to be able to backprop from the discriminator’s output to
the generator’s parameters. If the generated samples from the
generator are discrete, the backprop can no longer proceed.

4. GANs vs. VAEs: Both are generative models with (complemen-
tary) di↵erences:

feature VAE GAN
well defined objective (easier training, evalua-
tion metric):

yes no

generation of discrete data: yes no
discrete latent variables: no yes
sharp images/samples: no yes

20 PAC Learning

error error(h) = Px⇠D [c(x) 6= h(x)]
(✏, �) criterion: PX,Y [R(ĉn)  R(cBayes) + ✏] > 1� �
Strong PAC L.: holds for arbitrarily small ✏
Weak PAC L.: non-trivially large ✏
PAC learnability P [R(ĉn)  "] � 1� �
efficiently A runs in poly time in 1

"
and 1

�

Results:
R(ĉ⇤

n
)� infc2C R(c)  2 sup

c2C |R̂n(c)� R(c)|
P [sup

c2C |R̂n(c)� R(c)| > ✏]  2N exp(�2n✏2)
Implying: R(c)  R̂n(c) +

p
(logN � log(�/2))/2n

X shattered by A if
{X \ A|A 2 A} contains all subsets of X
VC Dim of A
max{n : 9X s.t.|X shattered by A, |X| = n} = 2|A|

score score(A, X) = |{X \A|A 2 A}|
shattering coeff
s(A, n) = maxX:|X|=n score(A, X)

If VA > 2 (VA = VC dim. of A): s(A, n)  nVA

P [R(c⇤
n
)� infc2CR(c) > ✏]  8s(A, n) exp(�n✏2/32)

20.1 PAC-Bayesian Setting for NN

1. Notation and definitions (simplified setting)

· 0/1-loss, ef (x, y) := I[f(x) 6= y] = 1�yf(x)
2

· empirical error eS
f

w.r.t. sample S, expected error ef
· generalisation gap:

�S
f

:= max(0, ef � eS
f
)  |ef � eS

f
| =

q
(ef � eS

f
)2 =:

q
2�S

f

T. (change of measure inequality) For any P >> Q, P -
measurable function � (random variable)

EQ[�]  KL(Q||P) + log(Ep[e
�]).

T. (McAllister) For fixed P and any Q, " 2 (0, 1) with probability

� " over sample sets S:

EQ[ef]� EQ[eS
f
] 

s
2

n
[KL(Q||P) + log

✓
2
p
n

"

◆
.

Minimise the generalisation error = minimise KL and minimise the
expected empirical error.

How to use it in training (PAC-Bayesian for DNNs):

1. Choose Gaussian P = N (✓0,�I), simplified: ✓0 = 0,� = 1
2. Gaussian Q = N (✓, diag(s)), si: variance in i-th weight
3. Can derive simple expression for KL(Q||P)
4. Minimise PAC Baues bound (typically: use surrogate loss)

EQ[eS
f
] +

s
2

n


KL(Q||P) + log

✓
2
p
n

"

◆�

5. Generate iterate sequence ✓t by SGD
6. Monte Carlo: evaluate gradient loss on perturbed parameter
✓0 ⇠ Q(✓, s)

7. Backprop with reparameterisation trick

✓0 = ✓ + diag(s)⌘, ⌘ ⇠ N (0, I)
8. Optimise jointly over ✓, s

20.2 Spectral Complexity of a DNN

D. (Spectral Complexity) Denote a DNN by A with W ` weight
matrices and ⇢` the Lipschitz constant of the `-th layer activation
function. Then for arbitrary reference matrices M` define

R(A) =

LY

`=1

⇢`kW `k2

!0

@
LX

`=1

k(W ` �M`)>k2/32,1

kW `k2/32

1

A
3/2

,

where kAk2 = spectral norm (max singular value of A; kAk2,1 =
sum of Euclidean norm of the columns.
T. (Bartlett) With various definitions as above: for all networks,
each choice of margin � > 0 and with probability (1 � �) over
samples:
Test Error(f)  empirical �-margin Error(f) ·

· Q̃
✓

kXkF R(A)
�n

log(max -width�
q

log
�

�

n

�◆

Take-away concept: The error does not depend on the parameter
number but on the spectral complexity of the network!

20.3 Concentration Inequalities

T. (Markov’s Inequality) Let X > 0 be a random variable s.t.
E[X]  1; then,

P (X > t) 
E[x]

t
holds for all t > 0.
T. (Chebysev’s tail bound)

P (|X � E[X]| > c�) 
1

c2
,

where � denotes standard deviation of X and c > 0.
D. (Moment generating function) induced by random variable
X is defined as

MX(�) = E[exp(�X)].

T. (Cherno↵ ’s bound) for a random variable X:

P (X � E[X] > t)  exp(��t)MX�E[X](�).

Ex. (Cherno↵ ’s bound for Gaussian random variable) . Us-
ing Cherno↵’s bound, we derive the following concentration for
Gaussian random variable X ⇠ N (0,�2):

P (X � E[X] > t)  exp

�

t2

2�2

!
.

Proof :
Let µ = E[X]. Since X is Gaussian, MX�µ(�) = exp(�2�2/2).
Replacing this into the Cherno↵’s bound leads to

P (X � µ > t)  exp(��t) exp(�2�2/2).

Then, we minimise the RHS w.r.t. � and we arrive at the result.

D. (Union bound) . The exponential tail bound are very useful
when we are using union bound, i.e. the following bound

P (E1 [... [Ek) 
kX

i=1

P (Ei).

T. (Hoe↵ding’s Inequality)

P

 �����
1

n

nX

i=1

Xi � E[X]

����� > t

!
 exp

�n

t2

4c2

!
.

T. (Hoe↵ding-Cherno↵)

P

 �����E[X]�
1

n

nX

i=1

Xi

����� � "
!
 2 exp(�n"2).

Ex. (Moment generating function) for x ⇠ N (µ,⌃)

Mx(t) = exp


t>µ +

1

2
t>⌃t

�
.

T. If random variables x and y have moment generating functions
Mx and My, then

Mx+y = Mx · My.

21 Graph Convolutional Networks

· Coupled activity propagation

X`+1 = �(W `X`Q)

· Denote by A the adjacency matrix of an undirected graph (sym-
metric). Augment via Ã := A + In.

· Define degree-normalised matrix

Q = D̃�1/2ÃD̃�1/2,

where D̃ is the diagonal degree matrix of Ã, i.e.

qij =
aij + �ij
p

d̃i

q
d̃j

, d̃i = 1 +
X

j

Aij

Design principles of Q: shift invariant, non-exploding (eigen-
values < 1).

D. (Linear Shift Invariant Filter) . A linear function H over a
graph with adjacency matrix A (possibly degree-normalised) is shift
invariant i↵ H(Ax) = A(Hx), i.e. H and A commute.

T.A linear filter H is A-shift invariant i↵ there exists coe�cients
s.t. H = ✓0I + ✓1A + ✓2A

2 + ... + ✓nA
n.

Ex.Use H = ✓0I + ✓1A (obtain higher degrees by stacking filters).

L.Let �1 � ... � �n be the eigenvalues of A := D�1/2AD�1/2,
then 1 = �1 � �n � �1.
Proof :

x>(I ± A)x = x>x ± 2
X

(i,j)

xixjp
di

p
dj

=
X

(i,j

xip
di

±
xjp
dj

!2

� 0

We have two cases (for all kxk = 1):

1. �n = minx{x>Ax} � �x>Ix = �1
2. 1 = x>Ix � maxx{x>Ax} = �1.

· I + A has largest eigenvalue 2, source of instabilities.
· Heuristically fix this via

I + D�1/2AD�1/2 7! D̃�1/2ÃD̃�1/2,

which has now largest eigenvalue 1.

