Probabilit;
Sum Rule P(X = 2:) = 5/, p(X =i, Y = ys)
Product rule P(X,Y) = P(Y|X)P(X)
Independence P(X,Y) = P(X)P(Y)
P&IYIPY)

Bayes

Rule P(Y|X) = ZOr0)
T PEIYDPOD

Cond. Ind. X LY|Z = P(X,Y|2)
Cond. Ind. X 1Y|Z = P(X|Y,2)
EX]= [yt fx(0)dt = px

Var [X] =E [(X —E[X))*] = —E[X])?
Cov (X,Y) = E,., [(X — E, [X])(¥ — usu[y]]
Cov(X) := Cov (X, X) = Var [X]

X, Y independent = Cov (X,Y) =

P(X[2)P(Y|2)
P(X|2)

) dt = £ [X?]

XXT"> 0 ((symmetric) positive semidefinite)

[X]=E[X*] -E[X]*
Var [AX] = A Var [X] AT Var [aX +b] = a® Var [X]
Var [0, aXi] = S0y a? Var (X, +25, - aa; Cov (X, X|

Ly aiXi] = S0y af Var [X] 4 5, i aia; Cov (Xi, X;)

<t)=FFx(t) =
()

Empirical CDF: F(t) =

Fx(t) (derivative of c.d.f. is p.d.f)

* :\:1 Lixi<ey
Empirical PDF: f, (1) = -
Empirical PDF: po (1) = +

8(t — X;) (continuous)
|« € D (discrete)

i

kelihood
P (data | model) x P (model)
P (data)

Prior

P(model 0 | data D

Posterior

>
Evidence

Information €0]
D. (Entropy) Let X be a random variable

according

F=Gro--0G20G,
F(x,0) = Gr(- - G2(G1(x;61);02);- -+ :61).
- 10.2—C tions of Maps

D. (Linear Function) A function f: E" — R™ is a linear func-
tion if the following properties hold

- Vx! € R flx 4 x') = J(x) + f(x')

- Vx € RVa € R: f(ax) = af(x)

(x) Then the entropy of
H = = Xea P(x)log (N(X)) =E[(X)] = E[-log(P(X))] =
describes the expected information content 1(X) of X
(Cross-Entropy) for the distributions p and ¢ over a given set
Hp, ) = — S P09 108(4(6)) = ey [~ 108(0(0)] > 0.
H(.‘(‘p.q) H(X)+ KL(p,q) > 0, where H uses p.
Ross - ENTROTY
N -
o} /
o] DT
o
Com. The second formulation clearly shows why s the

minimizer of the the maximizer of the
likelihood)
Com. Usually, g is the approximation of the unknown p-

Relation to L

cross-entropy (or hence:

T.The MGF ¢x (t) =

[eX] characterizes the distr. of a rv

Be(p):  pe +(1-p) N o):  exp (ut + 30°t%)
Bin(n.p): (pe' + (1= p))" | Gam(a, B): (72" for t < 1/8
Pois(\): €MD

T X, X, are ind. rvs with MGFs M, (6) = E [¢4], then

the MGF of ¥ = 7 a. X, is My (t) = [T, Mx, (,. n

T.Let X, Y be ind.. mm the p.df. of Z = is the
conv. of the p.d.f. of X and Y: fz(z) = [, fx(f)fy(foM'f
o fx(e — Ofv (0 dt

N6 4, B) = s o= )
N, =) o exp ($x - ) B(x - )

A=ATLn B=ATL G- me - )"

wp (@) =~ (8] [, By Be))

aj,up € R, By € Y pisd. Biz € R psd
az,uz € RY, Bop € 7Y pisd. By € R psd
Plazlar =2) = A (a2 [ue + E0 20 @ - w), B - B ES

. (Chebyshev) Let X be a rv with E[X] = 4 and variance
Var [X] = 0 < oo. Then for any ¢ > 0, we have P(X —u| > ) <
=
Anal
Log-Trick (Identity): Ve [ps(x)]
T. (Cauchy-Schwarz)
Yu,v e Vi (u,v) < [(u,v)] < lull [Iv]
Vu,v € V20 < [{uv)] < ull vl
Special case: (3 ziy:)? < (S a2) (S wi)
Special case: E[XY)? < E [X?]E [yi]
7 (Fundamental Theorem of Calculs)
) = F) = [y VH(T) Lo V()T (1) dt
TO) = 6 = 3 VI =0+ )y = x) dt
Com. Create a path ~ from x to y and integrate the dot product of

the gradient of the function-values at the path with the derivative
of the path.

D. (Saddle Points ete.)

ps (x) Vs [log(pe (x))]

dr =

)

In classification problems we want to estimato the probability of
ifferent outcomes. If we have the fnlluwmg quantities
+ estimated probability of outcome i is q; we want to tune g
in a way that the data gets the most ity e, et just see
how good g is doing.
the frequency (empirical probability) of outcome i in the data is

. ™ data points
Then the likelihood of the data under p; is
T af

the model estimates event i with pmmmmv i exactly n cot ps
Now the log-likelihood, divided by n is
o

npi

np; log (a:) (r a)

1Pilog (a:) = —H

Hence, maximizi to
the cross-entropy (whnrh is why it’s used so often as a loss)
D. (Kullback-Leibler Divergence)

For discrate probability distributions p and q defined on the same
probability space, the KL-divergence between p and q d a:

KL(.a) = = Sen () 108 (45) = e () k:g(,,@) >
0.

010 =~ s (35)] = Eae [ (53)] 20
KL(X;p,a) = H(p,q) = H(X), where H uses p

The KL-divergence is defined only if ¥x: g(x) = 0 = p(x) = 0
(absolute continuity). Whenever p(x) is zero the contribution of
the corresponding term is interpreted as zero because

lim,_, o+ @ log(z) =

p—
In ML it is a measure of the amount of information lost, when ¢
(model) is used to approximate p (true

Com. KL(p,y) =0+=p=q.

Com. Note that the KL-divergence is not symmetrict

M. f: R" = R is linear <= f(x) = w'x for some w € R"

D. (Hyperplane)

H:={x| =0} = {x | (w,x) =b}

where b = (w, p). W =normal vector, p points onto a point on the
plan

(w,x —p)

TAAny se C([0;1]) can be uniformly approximated to arbitrary
1 by a polygonal line (c.f. Shektman, 1982). Or in other

Words:
H = {p.w. linear functions} is dense in C([0,1]).

T. Lebesgue showed how a polygonal line with m pieces can be
written

et
g(x) = az+b+ > erlr —z:)4 (ReLU function approx.)

- Knots: 0=z¢ < 21 <
m+1 parameters: a.b,c1.

<oy <Tm =1

With the dimension lifting theorem we can lift this property from
1D to nD

D. (Level Sets) of a function [: B" — R is a one-parametric
family of sets defined as

)= x| f) =} =/ CR"
T The level sets of an affine function f(x) = w' x + b are affine
subspaces aw + V, o € B, V

CiLy() = et

T. (Comp. o Lin. Maps/- is a Lin. Map/Unit)
Let Fi,...,Fy, be linear maps, then F = Ff, o---0 Fy 0 Fy is also
a linear map.

TEvery Llayer NN of Tiiear Tayer collapses t6 & T-Tayer NN Fiii-
ther note that hereby

rank(F) = mm(nn(F)) < mingeqr,

+{x:w'w=0}

1) rank(F).
So this strongly suggests, that we need to mo
and use generalizations of linear maps (e.g., p.w.
or ridge functions)

beyond lincarity
linear functions,

- 10.3—Yniverssl Approximation with Ridge Func

D. (R\dge Funcuon) £:R™ = Ris a ridge function, if it can be
written as f(x) = o(w'x +b) = 70 J for some o: R — R, w € R"

+ J(x) = w'x + b, where f : R" — R (affine part)

+ Ly(€) = Useo-1(0 L) = Uier, o) L7 (D)

+ if o is differentiable at = = w'x + b then
Vaf(x) = o' (2)Vx ] (x) = 0’ (z)w = o’ (wx + b)

- a ridge function picks out one direction of change (linear part)
and then models the rate of change in that chosen direction via

e level sets of nd«c functions f = o o J are unions of affine

Th
subspaces, specifical

Ly(c)

CLIf o is one-to-one with inverse o
Ly(e) = Ly(o
and the level sets of f and f are in one-to-one correspondence.
Lo — R be a ridge function, differentiable at x
cither V7(x) =0 or Vi(x) L Ly(f(x)).
T.Let f: R" - B be differentiable at x. Then cither Vo /(.
or Vaf(x) L Ly (f(x))

D. (Universe of Ridge Functions for some o: & — k)
ar :{q‘ 9(x) = o(w'x+b), wER", bER, o JKAHR}

R" Then

D. (Universe of Continuous Ridge Functions)
" =Usecm 97

D. (Jensen-Shannon Divergence)
JSD(P,Q) =

LKL(P, M) + 3KL(Q. M) € [0,loz(n)?] M =

The JSD is a symmetrized and smoothed version of the
i divergonce,

N
D. (Hard Tan)

HardTanh: R" — R"
2 = HardTanh(x) =
2’ = HardTanh’(x) = diag(T (xe(-1,1)})

O Lixe(-1,1)) + Lixs1) = Lixao1)

T. (Jensen) J convex/concave, Vit A; = 0, o1,

J(EiAixi) €/ 2 T A f ()

Special case: f(E[X]) < E [£(X)].

D. (Lagrangian Formulation) of f(r,y)s.t.g(x,1) =

L@, y,7) = flz,y) —v(g(w,y) - c)

3 T gebra

T. (Sylvester Criterion) A d x d matrix is positive semi-definite

if and only if all the upper left k x k for k = 1,...,d have a positive

determinant.

negative definite: det < 0 for all odd-sized minors, and det > 0 for
r:

ivative
What & correct???

Tﬂx [u(x)v(x)] = (o) 24D () 242
e [(o(0)) = 250 250
e [F0T(0] = LELe(x) + BELEx) = 35800 + T,£(x)
# [F007AR00)] = 22 AR(x) + S ARG
- a e | 4
[xx] = 2x 2
& [b'ax] =A™ £ [a"xx"b] = (@b" + ba")x
& [(Ax +b)TC(Dx + e)] =D'C"(Ax +b) + ATC(Dx + e)

e [I1£6913] = 2 [fe0 0] =
—a2—

F [FGOIF(x) = 20 £(x)

D. (Max Layer)
max: R" — R

2 = max(x)

2 = max'(x) = diag(ei)
D. (Softmax)

Now here the output of each activation ? depends on every input,

where i = arg max,

. Composition of continuous functions is continuous.

T (Hence) G" C C(R")

D. (Span of Universe of Continuous Ridge Functions)
Hr )={n ‘ h=%] 9. 9,€6"}
D. (Dense Function Class # in C(R?))

A function class H C C(R?) is dense in C(R?).

= span(G"

iff

VfeCE') Ve>0 VK CRY K compact

Shew .

ma (%) = k()| = 1 = |

ERMLPs with one hidden layer and » plynomial activation function
are not universal function approximator:

Note thai There's an alicrnative S thie above thiough

AVUs
+Z

9@

T Networks with one hidden layer of ReLUs or absolute value units
(Avu)s are universal function ’\p])roxlm’\toxs

Co: can thus use
(Rcw. DA
we need.

Proof. (Sketch)

1. Universally approximate C(K) functions (K, compact) by polyg-

a'z b

—1¢] x — ]

restricted ation functions
1} e o oo Do mans, Mdden s

onal lines
2. Represent polyganal lines by (linear function +) linear combina-
tions of (- - |-functions

. Apply dimension lifting lemma to show density of the linear span
of resulting ridge function families GI"

10.5.1— Piecewise Linear Functions and Half

Ut {wiv)
Probability Distribution Perspective
1t is often useful to view the output of a FF network as the param-
eters p of some distribution over .

Fg: R = R™ = P(Y)

e 1% Fa) = Py | p = Fo(x)
= 11.1=Output Units and Objectives

Now, how can we find the most appropriate functios d
on training data { (x1,y1 (xn.yn)}? There are hmml]y two
options (both leading to similar loss functions):

gl

¥y~ Plyin)

« Decision theory (min. some
« Maximum Likelihood (max
)

risk, max. some payoff, ...)
likelihood, min. prob. dens. dist.,
_ 11.1.1 — Decision Theory —
In de 0 minimize the expected risk (defined
throngh  loss fanchion £) of a function F.

D (Bxpected Risk of a Function )

P argming 0y [y (. F(0)p(x. y) dx =

argming Ex.y (Y, F(X))]
Wy
RECF) o

o visk of F

However, we do not know £, we aren’t given p(x, y) (only samples).
D. (Loss Function)
LYXY SR (¥ ¥ )= YY)

e prea

St YYEVi Uy, y)=0 and Yy y €Ny £y

(') >0

So the ReLU and the AVU define a piecewise linear function with
2 picces. Hereby, R" is partitioned into two open half spaces (and
a border face)

cat = {x | wix 4> 0} R

s H = {x|wix+b<o}cr

S H = {x | Wik b=0} =R" —H' - H CR"

Further note that

<0y (HY) =g (H?) =

S 9 (HT) =0

<9 1(0 = g1 (v = ) with v = ~2brS (mirvoring at i

equivalent to subtracting the projection of x onto w twice from
x)

Partitions of ReLUs go to infinity, even if we have no examples there
weak to extrapolation errors (adversarial examples). However, if

you have enough data, then you can overcome this, because there

Won't be any new examples that lie outside of the training data

regions.

— 10.5.2— Linear C of ReLU:

D. (Training Risk / Empirical Risk)
Sy = {Giw) p | v}

R(F;Sx) = F T L, Fxi))

So the training risk is the expected risk under the empirical di
bution induced by the sample Sy

D. (Empirical Risk Minimization)
F={F|0€06} (eg neural network)

F(Sy) = argming » R(F:; Sn)

—11.1.2— Why ion is Needed
Wish: R(F;8,) "= R*(F*) (no overfitting)

So as n grows we'd want to do as good as if we knew

PO, y),
Law of large numbers guarantees: R(F; S ) "R (F) but this
doesn’t help us to move from some F —

In order to ultimately get from £ to F*, which minimizes R*(F*),
we need to restrict F such that R(F;S,) "= R*(F*). This will
prevent overfitting. However it’s not so easy to determine how to
constrain F such that F —

UNNOZERIBRAHRERY By linacly combining m rectified uits
R" can be partitioned at most into R(m) cells: R(m) <
S ()

C.If classes m < n we have R(m) = 2™ (exponential growth)
C-For any input size n we have R(m) € O(m") (polynomial slow-
down in number of cells, limited by the input space dimension)

—10.5.3 —Deep C of ReLUs
Question: Process n inputs through L ReLU layers with widths
1, ..., mr € O(m). Into how many (= R(m, L)) cells can R" be

maximally partitioned?
ISIOMBTEMBRBRIRIRANGY 1 o process madim. Inputs (hrough
L 'ReLU layers with widths my, € O(m).Then K" can be
partitioned o af most F(m, L) layers

R(m,L) € O ((%)“‘L’” m” )

Com. So for a fixed n the exponential growth (that may be lost
if classes m > n input dim, and we use one hidden layer) of the
number of partitions can be recuperated by increasing the number
layers. Further, ing layers, one may reduce the total
number of hidden nnits in total (= less params

—10.5.4— Hinging
D. (Hinge Function (extension of ReLU))

If g: " — R can be written with parameters w1, wa € B and
by by €  as below it is called a hinge function

900) = max (whx + by, whx + ba )

+ two hyperplanes, “glied” together at their intersection. So for
the it holds that: wix + b1 = wix + by

L. (Dimension Lifting)
J-L’ dense in C(R) = ¥n > 1: H2 dense in C(R")

. So we can lift the density property of ridge functions from
"),

c(m to C(R”

thus the jacobian is not just a diagonal matrix Summary
softmax(x); = gt lre o o B PTESTI 9 dense in C(R) P Vi 9 s dense i O(R")
2 softmax(x); {7 hn",m‘\x(‘l,), softmax(z); it
T o5, {softmax(z) fimax(z), i=7 | =10.4
D. (Sigmoid Activation Function)
Vo soft = Jeotiman () = - " | (@) € 1)
8 Sl =t (1
T (Taylor-Lagrange Formula) Sw=m ()
By Y e S ey /(@) = o(@) - (1= o))
J(@) = Sing T (e — wo)* + [ = e (%) = 3o (x) = diag(o(x) © (1 = o(x)))
)

D. (m-th Taylor Polynomial for [ at a)

D. (Error of m-th Taylor Polynomial for f at a)
RoL(G f(@) = Pr(x) = f@) =P+ R (@)
[GSE AN 2

Approximation Quality of Taylo Let f €

1(1 - tanh?($a))

D. (Tanh Activation Function)
tanh(z) =

€(-1;1)

x)

Vx tanh(x) = Jyann (x) = I — diag(tanh?(x))
= 40’(22) = 40(22)(1 — 0(22))

TremT

tanh'(z) = 1 — tanh?(

tanh’(2)

C"‘([a b)) and let f be (m + 1)- ume, difforentiabic. Then

Connection between Sigmoid and Tanh (Equal Representation

A,C.,D,a, b, e not a function of x,

f=f(x) . g=g(x), h=h(x),u=u(x), v=r(z)

e [OOT0) = u) 522 + 100 25

& [of ()] = a %53 = aly
P [ALG)] = AT

Z [x©a] = diag(a)
=0

=1 [ s - sest =
Pk [Ax]=A I (@),
& Al = a7 & [f(z(h(x)))] - e
- 438 ix
i [aTXb] = ab” & [a7XTXb] = X(abT +ba")
i [a"X"b] = ba’ Fx T (X] =1

2 [Tr(AXB)] = A"B"
:%:T [orxe] [l g [Trr (ax"B)] =BA

= 4.4—Vector-by-Matrix (Generalized Gradient)
ok [Xa] =

- Representational power: 2max(f, g) =
The good thing is that these hyperplanes (as opposed to the ReLU)
don’t interact cnlv in one dimension (w), but they interact in two
dimension

. Given a con
the function as

wix + b

wous pw. linear function in B

e can represent
[whx + o] [whx + bs + [whx + b |

wlx + by +

T+ b+ [wlx+ b | &

So for a continuous p.w
above) absolute value functions (— n layers with

(same as data dimensionality!)

Com. So, every -term has one more nesting,

D. (k-Hinge Function) g(x) = max(w]x + by, ...

T. (Wang and Sun, 2005) Every continuous p.w. lincar func-

tion from B" — R can be written as a signed sum of k-Hinges with

ki < [logy(n+1)]. So f(x) =3, 0:g:(x) where 6; € {£1

Com. This reduces the growth of absolute value nesting to loga-

rithmic growth, instead of linear growth

P, linear nmmum are dense in O(E").

— 10.

013 k

linear function in B" we need n nested
AVUs needed

wixt b))

Tinges were re-discovered under the nan
Coodiciion eta

c of Mazout by

D. (Regularized Empirical Risk)
Re(FiSn) = R(F; Sa) + M| F[l)

Weight decay, data augmentation, noise robustness (to weights,
abels (compensates for errors in labeling of data)), semi-

supervised learning, dropout, early stopping (prevent (nsrﬁnmg

through long training), multi-task learning (to learn general rey

Lentation or e more data). parameter sharing (CNNa). ensemblos

(reduces variance, same bias, costly)

Some regularization methods can be proven to be equivalent. How-
v in the

ever: jimit. Thus, it's good to use combinations of them

Learning in neural networks is about gradient-based optimization
(with very few exceptions). So what we'll do is compute the gradient
of the objective (empirical risk) with regards to the parameters 6:
om\T

V= (8 o 8
= 12:1—Comp. of Gradient via Backpropagation

ood way to compute VgR is by exploiting the computational

led

Then we have that

=
— Notation

Note that we have a lot of indicies. Always use the following
conven

- index of a layer: put 2z a superscrint

pi
- index of a dimension o t as a subscri
" Ruther we use the following herinnd for loyer activations

x'i=(F'o-..0 F')(x) € R™

o} € R: activation of i-th unit in layer |
- the index of a data point (i.c.. the index of one of the N sam-
ples), is omitted where possible, but if we really need to we'll use
rectangular brackets (to not confuse it with the vector indices)
S,

(x[i], y[i]) is the i-th sample point.
Note that in the following we'll be taking gradients w.r.t
datapoint (Just in order to not get another index i this ness). So,
e data sample (x,y). If we wanted to take the gradient w.r.t
some larger batch, then the resulting gradient would just be the
average of the gradients for each samplo datapoint in the batch.
— Deep Function C

Fo X—R" SR =Y
Fo=Fjo---oF;
R @8y x (¥xY) x(¥xYRse) +Rao

rostad in
L redictions i
it Trom choosing

evaluation sat S
(indtees p. dist.)

et

Y FE o, FY
X0t =y B R(Fpi {x.y"}) € Bzp

o (Wit bt

ol =V R
— ﬁzJ“ 11
=S e B =aliaed
Oz k3
T
* [Cjaep e
T T T oL
=30, 3T, 3T, 3 e
Backpmp’\gaucn just gives us another network in the mvmcd
direction. e* "’“ el ! I e RN
Algorithm 1: Activity
el VyR| yresy Vyly = Fo(x).y")|

v = * S,
for | « (L — l) (dou'n) to 0 do
[ ot e ahiie

Jacobians of Ridge Functions
X = Pl = o! (W) = o' ().
z' = Wik~ b

D o = o'eh uly

W' = diag(o’(2'))W*

Sidenote: if o =ReLU, then o’(z) € {0,1} which makes J ¢ a
sparsified version of W' (O-rows, or just the rows of W').

strcturs of the network though the scvca

The basic steps of backpropagation are as follows:

1. Forward-Pass: Perform a forward pass (for a given training input
x), compute all the activations for all units

Compute the gradient of R w.r.t. the ouput layer activations (for

« given target y) (evon though we're not iterested dircetly in

these gradients, they'Il simplify the computations of the gradients

in step 4.

3. Iteratively propagate the activation gradient information from
the outputs of the previous layer to the inputs of the current.
layer

4. Gompute the local gradients of the activations w.r.t. the weights

d biases

Since NNs are based on the composition of functions we'll inevite-

ably need the chain rule,

T. (1-D Chain Rule) y = /(g(x))
N

©

d(geq

(fog)

D. (Jacobi Matrix of a Map)
The Jacobian Jp of a map F: R —

(f'og) g

=0 2=0(z0)

E™ is defined as

gom | TR | o= 7 | emmen
—(VFp)—, ofm ofm F1
So each component function F;: " — E of F\, for i € {1,...,m}

has a respective g t. Putting these gradients together as rows
of a matrix gives us the Jacobian of F.
So we have that

D. (Maxout) is just the max non-linearity applied to k groups of
linear functions. So the i [+ d) (of the previous layer) is parti-
tioned into k sets A1, , and then we define the activations

Gj(x) = maxica, {wa+b } (i€{1,....d})

Com. So, here we apply the nonlinearity in B? (among some set
mcmhm A,) instead applying the nonlinearity in K (as with ridge

2018) Maxout networks with two maxout units
that are o opplied to 2m linear fanctions are universsl function sp-

-

r network with two maxout units and a
linear output unit (subtraction) can represent any continous p.w.

m m Strength) Gj(x) for j € {1,
3 b _ b jomin ot A
€ €latl: f@) =P N CED) i (8ia=a) o(x) = }tanh (§z) + § <= tanh 20(2z) — 1
Hence, RZ,(x) € O(¢™ 1) where ¢ tanh(x) = et e e e e ’
'vawxmmuon at =, interpolation to , ertent etden et erderr o fung
e 1 1 1+ — e
Funte dffférEice method T gradient T g B e
flate) = f(:r)+rV/(r)+(’7(f/‘) = Vf(z) = Lot  o(e?) i o2 hat ar
central differénces Tediices error =00 - et Kbkem‘)
S+ = f(@) + € V(@) + e Hess((@)e + O(e) o(22) — 1. Wang's theorem:
Sz =€) = fz) = € Vf(x) + L Hess(f)(x)e + O() “To5— fon Networks

Vi(w)
2nd-Order Taylor expanion at xo (function for x, we want to ex-
trapolate to f(x))

Fx) = f(x0) + (x = x0) Vac f(x0) + (x = x0) THess(f) (x0) (x — x0)
Newton’s M 1
Hess(f)(x") 1 Vs f(x").

~ fatosszo 4 o)

D. (Recuﬁed Linear Unit (ReLU))

(2)4 == max(0, z) = ReLU(x) € [0, 0]
@) = 1es0y
V()4 =3¢, (%) = diag(llx=0))

1}, x>0,
Az)y=4{0}, xz<0,
—— 01, = =0
e
- a linear function over a half-space u
+ and zero on the complement #° =

"

imation Theory
~10.1—C, Models
Want to learn: F*: R™ — R™, Learning: Now we reduce this

task to learning a f\mct\m\ F in some parameter space R? that
approximates I well.

F:R" xR* 5 R™, ={F(-,0)} 6cRr!

DL: the composition of simple functions can give rise to very com-
plex functions.

G

iR S pe G2, B, SLy e

D. (Absolute Value (Rectification) Unit (AVU))

1, x>0,
o ez

2| = {% B alzl={[L11], z=0

= {2, 2280 ok {[ﬁ} L =9

Relationship between ReLU and AVU

z 4|z

2

(@) =

= (@) +(—o)s = 20)5 =

linear function (exactly!
2. continous p.w. linear function are dense in C(R")

oF;
@r);,

97 dxy
T. (Jacobi Matrix Chain Rule)
GiR" > R? H:R'—R™
Fi=HoG

PR S e Hgm
xS 2= Gx) By = H(z) = H(G(x))

Chain-rule for a single component-function F;: R™ — R of F:
oF, _ oHoG), _ X": oH, 96,
0%j |x=xg 02j  lxexg  #=1 9%k lz=Gxg)  9%i lx=xg

s gives us the following lemma for Jacobi matrices of composi-
tlons of fanctions

L. (Jacobi Matrix Chain Rule)

TP lemsy = TH0Glxmng = T lamaixg) * I g

D. (i Network) set of
in a DAGn (layer-wise processing)
F=Flo P

where each layer | € {1
functions

units arranged

L}

a composition of the following

L

FURMST SRR

where F': R™=1 — E™1 is the lincar function in layer [
Fl(h'~) = Wh'™' +b, W eR™MXM-1 beR™
and o' R™ — R™ element-wise non-linearity at layer [.

\'nre that h®

DON(HGHGRIGYE) A laver that is neither the nput, nor the
output layer is called a hidden lay

S0 a feedforward neural network represents a family of functions

The functions Fy € F are parametrized by parameters 6, 0 =

PrGor TR fist Tollows Troi the upper
A(H 0 G)

0615 lxmny = T‘

_ Z oH, G

92 2(x0) %3 lxmxg
— @, \,:Gw) (-Vc) il
- 4
= )| 00y

— Special Case: Function Composition —
Let’s have a look at the special case where we compose a map with
a function

G:R" 4 R™,

h:E™ R, hoG:R" - R
And let’s use the more intuitive variable notation

G n
xSy

Now we'll se how we can get from the gradients w.r.t. the activa-
tions to the gradients w.r.t. the weights. Actually, that is very casy
- we just need to apply the chain rule one more time locally:

Just draw a picture of the network graph if you need to understand
it better

o OR el _ o D 0x i
oul] T Bal owl; T B2l puwl T 27,
3 B
et
a” o) oty
ks ot = e’z

Note that in a way, the size of the gradient depends on the error
that we have times the strength of the network's Output &t some
node.

-122— ion Graphs
The approach a backpropagation graph for a loss L from a FF
network grap
1. (RED) Starting at the loss L backward: for each node n and for
cach of its outputs o which has a path to the loss, add the node
£2 (at the height of node n). Connect the output o and that
node n to that newly created node.
2. (BROWN) Starting at the loss backward: for each node n create
4L (if it doesn't exist already) and con; ach previ-
ously created partial node (42) to it, and the pmv-mmy crated

&%
in this step) 3£ too.
5

EXGI(SEE2:8) Consider » recurront neural petwork with inputs
@17, hidden states A1 and outputs yi.7. Give

e = Glhesw), hy=o(h), he=F(ze, he—1;0)
A
Lr = Liyr) + 310113
Solution:
LT AL(yr) 9L dyr dhr
— Al A6
a0 El * *

Dyr ohr 00

oL oyr S~ _ohu ) 9he
=T Y
aurane 2=\ L o ) 50

_ 0L dyr XT: l_T[ hy, Oy, \ Oh, 9,
dyr Ohr Ohy, Ohie—1 | ORy 00

onvolutional Neural Networ

= 18.1=C i

Layers.
D. (Transform (aka Operator)) A transform T is just a map-
ping from one function space F (or a cross product of it) to another
function space F'. So T: F — F'

. (Linear Transform (/Operator)) A transform 7 is lincar, if
for all functions /., g and scalars a, 8, T(af + Bg) = o(Tf) + 8(Tg)

D. (Integral Transform (/Operator)) An integral transform
is any transform T of the following form

o
(TF)(w) :/l\’(t w) f(t) dt.
i

o input of this transform is @ function  of , and the output is

[t Tf in me other variabl

Note that the integral buundane: the class of i pu« function

and thc k mcl K must be defined such that T'f exists for any f i
e an integral operator.

TI here are numerous useful ntegral transforms. Each is specifiod by

a choice of the funct two variables, the kernel function,

Itcoral Kernet, of it of the transiorm

Some kernels have an associated inverse kernel K~

(roughly speaking) yields an inverse transform:

*(u, t), which

g
)= / K™, )(Tf) () du.

n

. Any integral transform is a lincar transform.

C.The expectation operator is a linear operator

Proof. Trivially follows from the lincarity of the integral

D. (Symmetric Kernel) A symmetric kernel K is one that is un-
changed when the two variables are permuted. So, K is symmetric,
i K(t K (u, 1)

Mathematical motivation: some problems are casier to solve if
transformed and solved in another domain (and then possibly the
solution is transformed back)
DL motivation: we'll learn the kernels.

(Convolution) Given two functions f, h: R — E, their convo-
lution is defined as

(Fem) = [ rw=nswa

/ B — ) dt =
Com. Whether the convolution exists depends on the properties
of f and h (the integral might diverge). However, a typical use is
J = signal, and h = fast decaying kernel function.

T. (Every Conv. can be Written as an Integral Transf.)
Now, a convolution of f with some function h can be seen as an
integral operator with a kernel

K (u,t) = hiu— 1)

Note that we can say the anclogous thing for the convolution of

with f definition of the convolution shows us directly that it's
Somriatativc!

LIThe Convolution () = 7(7#9) & a Tihcar ransform (with
K(u,t) = g(u — 1)),

Proof. Trivially follows from the fact that we can express every
convolution as an integral transform.

T. (Convolution Properties)
- Associativity (f * q) wh=1(axh)
- Commutativity f x
" Dilincarity (af 1 g) = (19 > 52) = a(f =) + ad(f =) +
(follows from commutativity and linearity)

Translation- (or Shift-) Invariant) A transform T is trans-
lation (or shift) invariant, if for any f and scalar T,

fr(t) = f(t—7)

(Def. shift operator s,)

(Tf)(8) = (T)(t = 7)

So, an operator T is shift-invariant iff it commutes with the shift
operator sa

(commuting of operators holds)
Vi (T(saf)) = (sa(T§))
So, the commutative diagram for this is;

f—A—saf=fa

T T

Tf =24 sa(T)) = T(fa)
T. (C is. (or Shift-)
Proof. (,o((f * D) = (o) * Dwr) = (f+

T, (9)) (w, v)

oty ((f # 9)(u, )

=T

b
<Z Z flu—i w—ngu»n) (u
2 E fluts—iv+t—j5)gli,j)

=3 U= i

iSpi=a
= (.0 () = 9)(u,v)

Tt Sumanze @ & e Shift-ivariant itegral

transfor

i (Convoluuon Theorem) Any lincar, translation-invariant
U;Ixansfuxmauun T can be written as a convolution with a suitable

Proot.
Let — represent the input-output relationship of a lincar system
By definition §(t) = h(t)

Using lincarity we have ad(t) — ah(t)

Let a = a(t') then a(t')5(t) — a(t')h(t)

By shift invariance we have 5(t — ') — h(t —t')

Combining linearity and shift invariance o (t')3(t — t')
)

= a(t)h(t—
Again by linearity, we can sum many terms of this kind.

S () — ) At = [ (¢ )h(t — t) dt’

But by definition of () we have that the LHS is 2(t), so

a(t) = [ w(t)h(t — ') dt’

By a change of variable on the RHS to
a(t) = [ x(t - t)AE') dt’ = y(t) [u]

— t' we also have




= 13.2 = Discrete Time C;

D. (Discrete Convolution)
For f,h: Z— R, we can define the discrete convolution via

(Semul= 3 flhlu—t]= > flu—thff)
=4 =

Com. Note that the use of rectangular brackets suggests that we're
using “arrays” (discrete-time samples

Com. Typically we use a h with finite suppoxl (windows size).
D. ( idi Discrete Co

For f,h: R — R we have

ey

(f = W), Stadhun =t = ta)

> s
> S -n,

g = ta)h(tr, . ta)

D. (Discrete Cross-Correlation)
Let f,h: Z — E, then
3 o=
o
(Fx f)lu] =
aka “sliding inner product

u+  instead of u — t)
convolution.
15

(hx P)lu] =

t]ffu 1]

i B[~

(f xR)[u]

. non-commutative, kernel “flipped over”
If kernel symmetric: cross-correlation =

where Fi(t) = h(—1).

a Matric

Tepresent the input signal, the Kernel and the outpt as vestars.
Copy the kernel as colurans into the matrix ofsetting it by o

vory time (sives & band matrix (spocial case of Toeplits matri)
Then the convolution is just a matrix-vector product.

= 13.4—=Why to use Convolutions in DL

-13. b ling (aka “Strides”)
Often, it is desirable to reduce the size of the feature maps.
why sub-sampling was introduced.

= Hereby the t 1/spat
reduced
Com. Often, the sub-sampling is done via a max-pooling according
to some interval step size (a.kia. stride)
= Toss of information

That's

I resolution i

+ Dimensionality reduction
+ Increase of efficiency

- an input signal that is 2D with 3 channels (7x7x3) (image x
chaunels)

« and wo want to loarn two flters W0 and W1, which each procoss
the 3 channels, and sum the results of the convolutions scross
cnch channel lending 10 a tensor of size 333 (comvolution remult
x num convolutions)

Usually we convolve over all of the channels together, such that each

Transforms in NNs are usually: lincar transform +
(gnen i convolution).
Many signals obey translation invariance, so we'd like to have trans-
lation Invariant feature mpas. If the relatlonship of translation
invariance s given in the input-output relation then this is perfect.
— 13.5— Border Hand ing s
There are different options to do this
- D. (Padding of p) Means we extend the image (or each dimen-
sion) by p on both sides (so +2p) and just fill in a constant there
(e.g. )
+ D. (Same Padding) our defnition: padding with seros = same
padding (“same” constant, . and we'll get a tensor of the

“same” dimen;
- D. (Valid Padding) only retain values from windows that are
fully-contained within the support of the signal f (see 2D exam-
walid padding
ion for C

Exploits structural sparseness.
D. (Receptive Field I! of z!)
The receptive field Z! of node a! is defined as 7! := {] ‘ wh# u}

where W' is the Toeplitz matrix of the convolution at layer I
Com. Hence, the receptive field of a node o} are just nodes the
which are connected to it and have a non-zero weight.

m. One may extend tho dofinition of the recoptive field over

eral layers. The further we go in layer, the bigger the re-

Lepms field becomes due to e aested convolutions. The receptive
el be even the entire image after a few layers. Hence, the
Comvoutions bave o be s

has the of all channels at its disposition

and the orde of the channels hence dossn’t matte

- 13.12—CNNs puter Vision

So the typical use oI convolution that we have in vision is: a

sequence of convolu

1. that reduce the spanal dimensions (sub-sampling), and

2. that increase the number of channel

The deeper we go in the network, we transform the spatial informa-
into 3 semantic representation. Usually, most of the parometers

Tie in the fully connected lay

1315 Famous CNN Architectures

— 13.18.1 — LeNet, 1989

MNIST, 2 Convolutional Layers + 2 Full

g

connected layers

-14.3 Descent
O(t+1) = H(z) = neVeR,
6= —nVeR(0)
= 14.4=Gradient Descent: Classic Analysis

In classical machine learaing we have & convez objective R. And
we den

- R as mc minimum of R
+ 6% as the optimal set of parameters (the minimizer of R)

So we have V0 # 0" : R* := R(6") < R(6).
D. (Strictly Convex Objective) — objective has only one (a
unique) minimum.

O # 07

R = R(07) < R(O)

D. (L-Lipschitz Continous Function) Given two metric spaces
(X, dx) and (¥,dy), where dx denotes the metric on the sat X,
and dy denotes the metric on set Y, a function f: v is called
Lipschitz continuous, if there exists a real cuns(an( Le m;, such
that

Vay,@a € X: dy (f(w1), f(w2)) < L - dx (21, 72)
Hereby, L is referred to as a Lipschitz constant for f.
<UL = L the function is called o short m
- 1f0< L <1and f maps a metric spacc m itself, so f: X = X,
thenthe fanceion s called a contractio

In particular, a map f: R" — led Llp.\(, itz continous if
there exists a L € Ry such that
Vxixa €RM:[1f() = )| S L X1 = %o
gl

=dgm (£0<1). £ (x2)) dgn (x1%2)

XS5 Tor our sk Tinetion R, we say that the gradient of it
VoR: Q= Q

is L-Lipschitz continous, if it holds that
V01,02 € ©:  [[VeR(61) — VoR(62)| < L 161 — 62|

where Q =

Com. So, the L tells us how big the gradient could be.
T.We have the following chain of inclusions for f\uu.huns over a
rVo\‘rd and bounded (i.., compact) subset of the real lin

Iy c

(Um'orml\)
ot

Com. It's important that the space is bounded. Because for exam-
ple onlv ona compact subset. [n b] C R the function c I8 Lipschitz

So the problem is if we have sharp non-linearities, then there are
two approaches to solve this
+ one is to be very conservative and only do small update steps by
choosing a very small learning rate.
+ or we are courageous and due huge jumps as depicted in the
mage

dof the typical problem that, at least some people
mmk “happens with NN,

Typical approaches are to clip the gradient when it gets too large,
or use a decreasing learning rate (in terms of time)

Now, the problem is not that the cliff is very steep. The problem is
the curvature. Because when we take the gradient, the gradient is
actually constant on the wall of the cliff. Let’s have a look at this
through some equat

Now, let’s evaluate what the risk is at some point, plus some gradi-
ent step. If we do the 2nd-order Taylor expansion of that, then we
get

Taylor

R(O-nVeR(F)) = R(6)
(NGl

where

H:=V’R(0)
Now, what we want is that the rest of the sum is negative. If that
s the case, because then we're improving our cost function. If not,
then we're basically diverging.
o,
« the first term —n || VeR(8)[|3 will obviously be negative, as it’s

(Hessian mat

- the second term will always be positive, as the hessian matrix is
positive semi-definite. Fortunately, we're squaring 5, which may
be already small, so the term is small. However, i the Hessian

(as in the Then we
can have a very large positive value in the second term. So what
then can happen is that

7
5 HV,,R(/I)H?_, 2 IVaRO)|*
So, the hessian term becomes much larger than the gradient. So
we're not improving our cost function.
+ and the remaining terms, will be negative (as defined by the
Taylor sum)
typical remedy for first-order methods is to take very small
:Lep sizes n

continous. On E the function ¢ is not Lipschitz as it
et bissantly steep.

btips://en uikipedia,ora/uiki/Lipschits continuityi
Eropertics

. An everywhere differentiable function J: & — E is Lipschitz con-
tinuous (with L = sup | f/(x)|) iff it has bounded first derivatives

—13.13.
MNIST, 3 Convolutional Layers (with max-pool subsampling) + 1
Fully connected layer

= 13.13.3 — AlexNet s
ImageNet: similar to LeNet5, just deeper and using GPU (perfor-
mance breaktrhough)

—18.13.4—1) i

Now, a problem that arose with this ever deeper and deeper channels
were that the filters at every layer were getting longer and longer
and lots of their coefficients were becoming zero (so no information
flowing through). So, Arora et al. came up with the idea of an
inception module.

What this inception module does is just taking all the channels
for one element in the space, and reduces their dimensionality.
Such that we don’t get too deep channels, and also compress the
information (learning the low-dimensional manifold)

This is what gave rise to the inception module:

ol

2 = 0, simply because

Obviously, we have Vj # I!: B
&

* may not be connected to z!,

1

- anode @}~
may be connected to x! through an edge with
zero weight, so Wi; = 0 - hence, tweal

+ or anode '~

g @~ has no effect on

2

So due to the weight-sharing, the kernel \\'ﬂght Rl is re-used for
every unit in the target layer at layer hen computing the

derivative 2% we just build an additive Combination of all the

derivatives (note that some of them might be zero).

DR GROR Oy
ORT & Bal OR)
fons of C fons as C

¥ output of I-th layer
¥~ output of (I — 1)-th layer / input to I-th layer
w convolution filter

25 known
YO 2y
aR oy 72 oR 9
=3 o
-0y, IR -1y
muxn(y“’”)A

g

b

* musou“"’))

¥ o
_(0Rr
=50

The derivative “ﬁ)

is analogous.

Note that we just used generalized indices i, k, 0 which may be
mult-dimensional

This exampl s activation functions and biases, but that could
be asily ihcluded with the chainerule

D. (Rotation180) Vi: rot180(x); = x(_1).

- 13.7—Efficient Comp. of Convolutional Activities mmm
A naive way to compute the convolution of a signal of length 1
and a kernel of length m gives an effort of O(m - n). A faster way
is to transform both with the FFT and then just do clement-wise
multiplication (effort: O(n log n)). However, this is rarely done in
CNNs as the filters usually are small (m < n, m & log(n)).

13.8 = Typical C;
typical setup of a convolutional layer is as follows:

Convolution stage: affine transform

Detector stage: nonlincarity (.g., ReLU)

Pooling stage: locally combine activities in some way (max, avg,

Layer

P

locality of the item that activated the neurons isn’t too impor-
tant, further we profit from dimensionality reduction. alternative
do convolution with stride. Another thing that turns out to be

is that most of the kernels that are learned rosemble a low-
Hence. when

we sub-sample the images most of t
ed.

-13.9
The most frequently used pooling function is: maz pooling. But
one can imagine using other pooling functions, such as: min, avg,
softmax

D. (Max-Pooling)

Max pooling works. as follows if we define a window size of 7 = 3
(in 1D or 2D), th

max (1v+k 1o S r}

k 1<}

“the maximum over a small

So. gen st take
ipatch” /" nelghh()urhnml" of some units.

T. (Max-Pooling: Invariance)

Let T be the set nf \nvsvnhle‘ tromaformations (6.5, integeal troms-
forms, integal operators) n T forms a group w.r.t. function
composition: (T, ~

D. (Dimension Reduction) m channcls of a Lxlxk convolution
™k

weR"™H
So it uses a L flte over the & fnput chaanels (which i actually
no convolution), aka “network within a network” .
— 13.18.5 — Googl

xFij = o(Wxij),

Inception Net;

The Google Inception Network uses many layers of this inception
module along with some other tricks

+ dimensionality reduction through the inception modules
at various sizes, as different filter sizes turned out

to be useful
+ a max-pooling of the previous layer, and a dimensionality reduc-
tion of the rosult
Il convs for dinhonsion reduction before convolving with larg-

Kers
- then ail these informations are passcd to the next layer.
« gradient shorteut ct softmax layer at intermediate stages
to have the gladlent Tow untl the begmmng> of the nelwolk
erfor-

- Ali*Hieall the dimensionality reductions improved the emcxeucy
= 13.14 — Networks Similar to
D. (Locally Connected Network) A locally connected network
has the same connections that a CNN would have, however, the
parameters are not shared. So the output nodes do not connect to
all nodes, just to a set of input nodes that are considered “near”
(locally connected).

= 13.15— Comparison of #Parameters (CNNs, FC, LC) =
Ex.input image m X n X ¢

aumber of channels)
K convolution kernels: p x q (valid padding and stride 1)
—p+ 1) x(n—g+1)x K

B input fmage 7 X 0 % ¢ (¢

output dimensions: (m

Tumber of channels)
K convolution kernels: ko x k1 (padding po, p1, stride so, 51, dila-
tion do, dy
output. d.mc.mom
o da oDt 4y | | B e TSt g | g
CNNTK (pge 7T
g\p}.&ramctcrs of fully-conn. NN with same number of outputs as
mne((m —p+ 1)(,1 —q+1)+ 1K
ST ToeN NN i
pac((m —p+ 1)(ﬂ —a+ 1)+ DK
Ex. Assume we have an m x n image (with one channel).
And we convolve it with a filter (2p + 1) x (2¢ + 1)
Then the convolved image has dimensions (assuming stride 1)
+ valid padding (only where it’s defined): (m — 2p) x (n — 2q)
- same padding (extend image with constant): m x n where the
extended image has size (m + 2p) x (n + 2q).

14

= 14.1—Learning as Optimization
Machine learning uses optimization, but it's not equal to optimiza-
tion for two reasons:

L The empirical risk is only a prozy for the expected risk

2. The loss function may only be a surrogate

= 14.2—Objectives as

A ONN:

T particalar any Tanciion 18 Tocally
Lipschitz continuous. As continuous functions are bounded on an
interval, so its gradient is locally bounded as well

TUIf R is convex with L-Lipschitz-continuous gradients then we
have that

ROW) - R < 224 o) — 07| € 00!

Com. So we have a polynomial (linear) convergence rate of 6 to-

yards the optimal parameter 0" (note: just i the comvex setting!)
= we can sce, the convergence time is bou by a time that

depends on ont initial guees, and the Lipschits constant L

Com. Usually one value for 7 that people use in this setting is

ni= 4 orni=

Proof. See here
D. (Convex Set) A set § C R is called conves if

Wi x €8, VAE[0,1]: Ax+(1-A)x €S

Com. Any point on the line between two points is within the set
D. (Convex Function) A function /: S — E defined on a convez
set § CRY is called conves if

vx,x' €8, A€ [0,1] FOX+ (1= A)x")

S A+ (1= N f(x)
Com. convex combination of two points < evaluation of convex
combination of two points.

Com. Another way to formulate that f is convex function is to
say that the epi-graph of f is a convex set.
. Every local optimum of a convex function is a global optimum.
T. (Operations that Preserve Convexity)

+ —f is concave if and only if f is convex

- nonnegative weighted sum:

+ point/element-wise maximum max(f1(x), .., fn(x))

+ composition with non-decreasing function, e.g. e/

- composition with affine mapping: f(Ax + b)

-+ restriction to a line (of convex set domain)

D. (Strictly Convex Function) J is called strictly conver if
vx,x € S,x#X A€ [0,1]: FOxH(1-A)x") < Af(x)+(1-A) f(x]
D. (smmgly Convex nmmm.) A differentiable function f is
called pi-stro) e following incauality holds for all
points %,y In 18 domain:
(Viy) -

where |- | is any norm. An equivalent condition is the following;

)2 () + Vf(0)"

vy £,y = %) = nlly = xI3

u
vy (v =)+ 5 lly = xI}

Com. Thie concept of Strong convexity cxtends and

the notion of strict convexity. A strongly convex function

strictly convex, but not vice versa. Notice how the dehnmcn of

strong conve roaches the definition for stri
=0 andis dentical to the definition of & convex fanction vhon

Ji = 0. Despite this, functions exist that are strictly comve, but

e ot strongly comvo for amy > 0.

T.Now, when R is p-strongly convex in 0 and its gradient is L-

Lipschitz continuous =
. A% . A%
R(O(1) —R" < (1 - Z) (R(O(0) ~R*) € O ((1 - Z) )

So we have

- an exponential convergence (“lincar rate”)

+ and the rate depends adversely on the condition number £. So
we want the maximum gradient to be small, and we want the
curvature to be large (which are somewhat contrary desires, but

ideally the condition number is very close t

T.TF we use Nesterov acceleration (in the general case), then we
get a polynomial convergence rate of O(t~
Com. The trick used in Lhe \rmem appmch is momentum,

Howeve
A e can cee the sradient morm
we train (can be checked empirically)
tends to have larger fluctuat

ngs bececome even stranger because of the curvature.
gets larger and larger the more
And the gradient norm also

we're getting closer to the minimum,
the gradient t smaller and smaller, as the objective gets
flattor and fatter at the optimal point - but that's actually not the

0 0 50
Tra

100 150 200 250 50 100 150 200

Training time (epochs)

230

[

pochs)

This is probably so, becauso we're dealing with large curyatures
when reaching (or getting close to) the optimal parameters. So
gradient descent we may not arrive at a critical point of any Kind,
and chis also motivates to use more and more decreasing learning
rates, the closer we get to the optimal par: . Note that this
Eraph was built using the MNIST dataset and some O
Note that there exist many architectures where nal gradient
was very large, and ;uu ey arc uscd i practice, and pople are
auite happy
- 14. S_Opumlzatmn Challenges in NNs:

Local Min-,

At the beginning people were happy when they were doing con-
vex optimization because tiere was a single optimun and ii was
reachable en when people started using non-convex opti-
mization lhey swere afraid of geting into non-optimal local minima

and getting stuck ¢

Naiiral netwoxk ot mncuons G ave any 1oeal mininia and/or

saddle points - and this is typical. Gradient descent can get stuck.

Questions that have been looked at are

+ Ar local minima a practical issue? Somtimes not: Gori & Tesi,
992

- Do docal minima even exist? Sometimes not (auto encoder):
Baldi & Hornik, 1989

+ Are local minima typically worse? often not (large networks):
e.g., Choromanska et al, 20

- Can we understand the learning dynamics? Deep linear case has
similarities with non-linear case, ¢.g., Saxe et al., 2

So it turns out that the non-convexity is actually not so much of

an issue. It turns out that when we go to very high dimensions, the

number of local minima VS the number of saddle points (gradient

in sero, but non-optimal) s very small - so we'ce miuch more likely

up in a saddle point. Howover, in practice, if we do

here that will malke our gradicnt move. Then,

fker waiting for & while el xit the saddle o

Now, next we'll look at the insights that were gzum:d by the paper

of Saxe.

= 14.7—Least Squares: Single Layer Lin. Netw.
Lets assume that wo havo some inputs x € K" and some
outputs ¥ € R™ = 3 and we have a very simple architecture, that
will take our mput x and transform it to some output in Y t
output space

F(x) = Ax, AeR™"
So then, we can define our risk as
R(A) =E [lly - AxI}

50 we're taking the expectation with regard to the empirical distri-
bution (averaginv over all (x, y)-training pairs

NGw, "i6 iake Thifigs Sinpler, we assuie that The Tputs are
whitened, that means that

B [xx

So if the mean ju = o, then our input is uncorrelated, and every
feature is of variance 1.

- 145
When it comes to NNs the ob.m.twe is u,uzmy non-convex. So th
is for example an objective that we may get that is non-convex.
Still, we can apply gradient descent in this setting. And if we
respect the rule of choosing the learning rate as n = + where L is
the Lipschitz-constant of the function, then usually, we're fine.

Models with multiplication of many weights (depth, recurrence)
sharp non-linearities

» Very large Lipschitz constant

> Would theoretically require very small gradient steps — very

N
VoR(D) = Esynpp [VoR(SN)] = E [ S VaRr(6; (xM-yM})}
=

he typical structure of a learning objective in a NN is a large finite
sum (over all training instances). Accuracy-complexity trade-off: in
practice we subsample terms in the sum, by using mini-batches of
the training data (so we'll get something close to the true gradient

- but not exactly). The idea behind it, is that everything will work
out in expectation. Further, we favour cheap and imprecise com-
putations over many datapoints rather than precise and expensive
computations over a few datapoints.

slow

Motivates gradient clipping heuristics and learning rate decay.

Further, have a look at the following trace identities
VTw = 3 v = Te (vw) = Tr (wv")

Tr(A) + Tr (B)
(linearity of trace and exp.)

Tr(A+B)
E [Tr (X)] = Tr (E [X])

Now let’s see if we can rewrite the risk differently

R(A) = E Iy - Axl3]
%

—s[m(v-ar-a))

Using the lincarity of the expectation and the trace, and some trace
identities leads

- (m [yy ]) - 2mAE o]+ THAE o] AT
iy’

T e © e
™ (!E [yy']) —2Tr (AT ) 4T (AAT)

B ol A

Now, let’s see how we can minimize the risk

A’ = argmin R(A)
A

W
“nIVeROI3+% VoRO)HY)R(0)
ToR(O) HVeR()

=argn
A

—2Tr (ATT) + Tr (AAT)
Now it’s hard to continue from here, so we'll just do it via computing
the gradient (generalized) and setting it equal to zero:
R(A) =T ( [yy7]) — 2T (ATT) + T (AAT)
VAR(A) = 2T +2A=2(A - T)

So, obviously, the derivative is zero for

AT =T = [xyT] = m [pT]

1
SO IRJUUIN

NGte that When computing the dervative we've wsed the Tollowing
trace differentiation rules (cf. wikipedia, The Matrix Cookbook)

VAT (AAT)

B

24 VATI(AB

—14.9.1—C Rat
Under certain conditions SGD converges to the optimum:
+ If we have a convex, or strongly convex objective,
- and if we have Lipschitz continous gradients,
- and a deaying learning rate, s.t.

SH<os

p——

typically n, = Ct™, 1 < a < 1 (c.f. harmonic series.

- or we use iterate (Polyak) averaging (once we start jumping
around, we average the solutions over time)

Then, we can get the following convergence rat

- strongly-convex case: can achieve a O(1/t) suboptimality rate
(only polynomial convergence

- non-strongly convex case: O(1/v/E) suboptimality rate (even
worse than

Note that one could have solved the solution also through the follow-
ing way, by recognizing that A(t) follows the following differential
equation

A(t)

So rearranging the equation for A(f) we get

~nVAR(A(t)) = 2n(T = A(t)) = 20T — 2nA(t).
1
Al = —ZnA®D +T

And now, since we're using gradient descent, we'll converge, and
the gradients will go to zero, hence

Jim A(t) = 7?7 (egn; A(t)) +r=T

B
So A(t) will converge to T
= 14.8 = Least Squares: Two-Layer Lin. Netw.

So, even if the convergence rates are not super nice, thanks to the

cheap gradient computation (only one example at the time), we

may even converge faster than computing the gradient on the full

dataset everytime.

—14.9.2—

Now, let’s have a look at some of the practicaliti
Atmost none of the analysis applies to the non-convex case

Choosing & learning rate schedule

Fast dechy scheduls may lead 1o Super slow comvergence

+ In practice, we tend to use larger step sizes and level out at a
minimal step size. The justification behind this that the SGD
with a fixed step size is known to converge to a ball around the
optimum (strongly convex case). So we may use

e = max(0.001

- Pusther, there's the common beliaf that the stochasticity of the
“ ", since it may help to escape from reagions
with small gradionts via perturbations

After the gradient step we'll have the follow

g situation:

(-2

So what actually happens is that if we take the term for y
we expand it this leads to terms of up to order L.

) (= mas) e (-

and

:<(,ﬁ“’>’ %(Hm)+ H,,,)L(f
:(L )1,,,;7;‘ f{“")” H,V)Lmi

L
L) T (et (]‘[ %) @

e

-

I

wes

Hence, the higher order terms in terms of 7 () may become signifi-
cant, de«p, e the d-\m ing

Now, the question is what happens, when we build a two-layer
linear network (again with the squared error), with no
So we'll have a lincar mapping (that is composed of two linear
‘mappings)

F(x) = Ax = QWx
Now, from what we've seen before, we can express the risk as (due
to trace identities, trace linearity, ctc.) just by replacing A

R(QW

const. + Tr ((Qw)(QW)*) —2Tr (Qwr*)

Now, taking the derivatives w.r.t. the parameters, we get (using

the ch:
IR(A) DA
VaR(@Q W) #dq
IR(A) OA
VWR(Q W) = 9; )(;w

Which in the end gives us

VQR(Q. W) =2QWW' — 2I'W" = 2(A - T)W"
L

VwR(Q, W)

2Q"(A-T)

2Q" QW —2Q'T
=y

Now, what we'll do is we'll perform the SVD of T (we can do this
since I depends on the data, it was the correlation matrix
between the inputs and the outputs). S
r=usv'

Now, we'll linearly transform the variables:

Q=-u'Qq = Qq=uQ

W=WV = W=wv'
Then, we have that the common term in the gradients A — T can
be written as follows

A-T=QW-UxzV"
uu'Qwv Vv’ —uxv’
=

W
—U@QW - £)V

And we can re-express the risk in terms of Q, W as follows:
R(Q, W) = const. + Tr ((U'QWV*)(U*()WV')*)
—oTr ((u*éWv')rT)
And we can compute the corresponding projected gradients in torms
of Q. W as follows.

VaR(Q W) UTVQ'R(Q,W) =

So, as we can muy see, the gradients can be computed through

the rules of lincarit

49— Stochastic Gradient Descent mmmme

o, how do we modify the gradient descent approach to work with
atc

The idea in stochastic gradient descent is to choose the update

directin V' at random, such that

E[V]=
So, the randomization scheme is unbiased.
So SGD works via subsampling. So we pi

Sk C Sy, K<N. (usually K < N)

~VoR.

k a random subset

And since we're picking Si at random, note how
E[R(Sk)) = R(Sn)
And thus it also holds for the gradient that

i

VoE [R(SK)] = E[VoR(Sk)] = VoR(Sn)
So, with SGD, we just do gmmcm descent, where at each ¢ we'll
o'a randomization of Sy

0(t+1) = 0(t) = nVeR(0(1); Sk (1))

In practice, what is dono is we permute the instances, and break
up into mini-baty actually not doing random

sampling at every thmsste. Werre rathor doing & random parti

tioning of the training instances into batches. This gives rise to the

following definitions:

D (Bpoeh = ohe sweep through the WHole data)

+ take the data batch by batch

- compute one gradient by batch

+ harder to analyze theoretically

+ typically works better in prac

+ no permutation — danger of “unlearning”. Let’s suppose we're
training for MNIST, and we're first doing the gradient steps
for the 1s, then for the 2s, cte. This will ccmplcccl) blas the
gradient and lead us into the wrong direction at adient,
step Tn the end we'll never convergs to & good solution.

T ens that this way SGD is a bit harder to analyze
Lheolencally but for NNs it works quite well in practic
D (Minibateh Size)

- “Standard SGD": k = 1, this is for classical SGD. However, if
we only take one instance, the error on the gradient direction
will be'too large

- but: larger r for utilizing concurrency in GPUs or mul-
Hebre GEUL And wel also get more accuracy. Of course, this
requires more computation per gradicnt step, so we'll have to
compute more Lo do on step, but it pays of in terms of accuracy
of the gradient (and it can be parallelized anyw:

Com. In practice we just need to ensure that e batch s suffc
ciently big to have a representative subsample to compute a reliable
estimate of the gradient (in order to converge). Further, we usually
use batch-sizes of 2% for some k € N,

4
Accumulate the gradient over several updates (as a
weighted average). The momentum (averaging) keeps the gradient
moving better towards the optimum (instead of zig-zagging).
ation: a = 0.95 (typi allv) m(0) = o.

Then at every timestep £ = 1,
m(t) = am(t - 1) - (1 - a)v.,R(a(: -1),

Ini

m(t) = ﬁ, (bias correction, otw. gradient is too small at

beginning)

6(t) = 0(t — 1) — (1)  (update parameters)

Usually it's good to choose a small alpha (0.5) at the beginning,

and only towards Lhe end, we'll increase alpha to 0.99 to accumulate

and average the

—14.9.4

Fm« jump, and Hnen compute the mumsntum based on the gxsdxem
the place that we'll land (seems t better in practice

9(: 1) = 0(t) + nam(t) (jump first)

V(t+1) = av(t) + Vo R(6(t) + o (t)). (and then correct the jump

with the gradient at the place that we jumped to]

— 14.9.5 — AdaGrad

With AdaGrad we consi

all the gradients ito a

er the entire history of gradients and put
gradient matriz, so
G € RiXtmax

6er?, I

Then we compute the (parhal) row sums of squares of G (note: not
the gradient norms! — rows

And then we adapt the gradient stepsize for each dimension as
follows:

— ]
0:(t+1) = 0:(t) JJﬂ“mvm(n, 4> 0 (small)
“This will transform the gmdlem such s if the loss landscape would
< isometric shay he gradient appropri-

1tely e e dmension. 2 nstend of havmg & valley, we'll have
a nice round hole again. This avoids this typical situation where
the gradient descent boundes left and right in the valley, instead of
walking down the valley.

In practice a variant of AdaGrad (RMSprop) is used. Intuitively:
the learning rate decays faster for weights that have seen significant
updat

Theoretical justification: regret bounds for convex objectives
Hazan, Singer, 2011) (out of scope for this lecture).

So, Tieleman & Hinton came up with a
AdaGrad® in 2012;

(Duchi,

“non-convex variant of

g p<1

This is just a moving average, which is exponentially weighted. The
weight decays exponentially over time, and thus

It turns out that this optimizer works very nice some times.
—14.9.6 —ADAM
Adam is probably the most popular optimizer today. It takes the
best of both worlds: AdaGrad (adapting the gradient) + Momen-
tum. However, more parameters to tune (81, f2)

m(0) = o, v(0) = 0

Typical values: f1 = 0.9, B2
Then at every timestep ¢ = 1,2
g(t) = VyR(8(t — 1)) (get the gradient)

Bim(t — 1) + (1 — $1)g(t) (update the biased first moment

Initialization:

cstmmtc)
v(t) = Bav(t—1)+(1— B2)g(t)? (update the b. second raw moment
estimate)

m(t) = m(t)(1 — 1) (bias correction first moment estimate)

v(t) (£)(1 - B5) (bl&a correction second raw moment estimate)
o(t) =0t — 1 + nm /T+() (update params)

-14.10 =

Polyak Avmgmg may bring us good guarantecs f e have o convex

loss (on average). However, for DL it's not ideal. The reason are

- if we may want to have an idea over what Lhe ver the
whole W1d e, then wo'd have to swipe over all the
Tataset which will take & lot of time. So. 1 nood & good idea
(we'll get a better but slower convergence). So what people do
in practice instead is that they just run a weighted average to
forget what was in the past. Usually, the weighted

— 14.10.1—Batch

normalization (loffe & Saegedy, 2015) is one of the most
controversial but most useful tricks in DL.

the big problems that we have when we optimize NNs,
that usually there exist strong dependencies botween the weights
in various layers (rec: also saw that the gradients interact
With cach other through complox dynamics). S its hard to find
a suitable learning rate for all the situations of the weights. The
dynamics were fine in this case, but if we have a large network it
might not work out, and we may have to wait a long time until the

mics diminish snd lead to the solution. What batch normsl-

ization trics to achiove is to femove the dependencios between the
layers. So the learning algorithm can optin s of each
laer independently. Of course, that’s not really what happens, but
anyways that’s the idea behind it
Let’s have alook at a toy example to illustrate thi
network with one unit per layer:

oo ()

For later notation, let us collect all the weights in a set

W= {w,...,wr}

Batc

is: a deep linear

=wywy -

e a of TS0 ormalize the Tayer activa-
ows L baten nommluauon) and then to backpropagae | Lhro\\gh
the normalization. So it “keeps t distribution” at e:
And if wo optimize the waights of a layor, it should not ‘ifect tho
distribution at the end of the lay

So what we do is

- we fix a layer I,

- and we fix a set of examples I C [1: N]

- and compute the mean activities and a vector of the standard

deviations

W= e )eli) € B
2

ol e rm

o FYGeil) — 1

- then we remove the mean and divide by the standard deviation
to normalize the activities,

However, when we do this, what happens is that we can rep-
resent less than before. We may only have distributions with
mean zero, and variance one (because we enforce this through
the normalization). So we need to do something to regain the
representational power. What we do is we multiply by some
cocfficients a;; an

ol 8

d & are functions of the weights and they can be

So since p an
ifferentiated.
A further noto about batch-normalization Is that it dossn’t change
the infor the have p and o we
could theoretically recuperate the original activations

Now, some implementation details:

* ([he biss term before the batch normalization should be semoved
since we're removing the mean it makes no sense,

- At training time, the statistics are computed per batch, hence
they're very noisy. So what people do in practice (e.g, when
they're ng just one sample) is that they keep a runniug
verage over the patch batchonorm statist est time.
and & are replaced by the running averages that were colloiod
during training time. An alternative, is to pass through the
whole dataset at the end of the training and re-compute the
statistics - that may work even better (but it takes a lot of time).

What is not very clear is why batch-normalization works. The orig-
inal paper about batch-normalization (BN) said that BN reduces
the internal covariance shift of the data. What they meant by this
is that: let’s say that we have a very simple classifier, that will
basically classify everything that is negative to one cla
erything that is positive to another class. Then, when we just shift
ta by 8 constant vecter, then, without batch-normialization
wo'd shift 2l the datapoints into one class. However, with BN since
the mean is removed we'll remove that constant st it the BN layor
out. So BN reduces the covariance shift. That was
B SR R dendone ST 2
Howover, it turns out that some other people came later on and said
the following: They didn't negate the effect of the covariance-shift
redustion, but the reason they said that BN works i that it makes
e landscape more smooth. Hence, the optimization
Worke hetier and gives better reoulte
However, no-one really knows why BN works so well
—14.10.2—Other

- Curriculum learning and non-uniform sampling of
data points — focus on the most relevant examples (Bengio,
Louradour, Collobert, Weston, 2009) (DL-Book: 8.7.6) Or
increase hardness of tasks (corner-casesd as NN improves

- Continuation methods: define a family of (simpler) objective
functions and track solutions, gradually change hardness of loss
(DL-Book:

- Hourlatios for Inltiallzation (DL Book: 8.4) scale the wights
of cach layer y that at at the end of the layer, the data
oS morc or loss the. Same energy (and gradiont nos ate more
or less the same at each layer)

- pre-training (DL-Book: for better initialization, to
avoid local minima (less relevant today)




= 14.11 = N Based

Ra(6;S) = R(6:S) + Q(8),
where  is a functional (function from a vector-space to the field
over which it’s defined) that does not depend on the training data.
D. (L2 Frobenius-Norm Penalty (Weight Decay))

Q0) = T N WG, A 20

hor:. n 's common practice to only penalize the weights, and not.
the biase

So, the aasuxuphun here is that the have to be small. So
we'll only allow a big increase in thc erahtar if ot comes at &
much bigger increase in performance. Regularization based on the

Ly-norm i also called weight. decay, as

i
which means that the weights in the I-th layer get pulled towards
zero with “gain” A'. What happens in the gradient-update step is
0(t+1) = 0(t) = VoRa(6;S)
=1 -n\)0(t)- n ViR

e decay | wtep data dep.

and also note that we require gA' < 1

Let's analyse the weight decay: The Quadratic (Taylor) spproxi-
mation of R around the optimal 6* would

R(0) = R(9°) + VoR(O)(0 — 0" >+7(9 0 )TH@O - 0°)
NS
7R9)+ (0—0")H®O—0") )
where Hr is the hessian of R, so
PR
M), = 5550

and H is the

evaluation of Hr at 0%:

H:=Hg(0")

So now we have the upper quadratic approximation of the cost

function (+) (s0 we'te assuming it is @ parabola and that wo know

07). Now, let's compute the gradient of that upper approximation
of R (in (x)).

1
R(8°) + 50— 07)TH(©O - 0%)

=-HO"+HO (%)

Fu

her, recall that

Q=200 = diag(\)0

So, now, let’s set VoRa (with VoR approximated as in (+)) equal
to zero.

VoRa %0

= —HO" + HO + diag(A)0 = 0
- (H + diag(X)0 = HE*

Since both H and diag(A) are s.p.s.d. we can invert their sum

6= (H + diag(A)) 'H6"
Now, what we can directly seo hore is that if we use
reaularization § ~ 0% posid. we can diagonalize it

to H=QAQ" where A = ..m) and plug this in which
gives us

=

iag(er, -

QAQT + diag(\))~'QAQT "

Q (A+diagn) A QTe"
(At diag)” 4

=iy )

So this gives us an idea what happens with 07 in the dircetions of
the cigenvectors of the hessian 2-regularization.

if ;> \;: effect vanishes: al ns in parameter space
with large cigenvalues . the wclghts are s ’\lmo st not reduced
if e; < Ai: shrinking effect: rections in parameter
Space eith mall cigenvalues €1 the \vclghtb are shrunk to nearly
zero magnitude.

The following picture illustrates this better:

The isometric balls illustrate the regularization loss (L2) for any
ehoice of 8 for w), and the ellipaold curves lustzate the sk (for &
pasabolic risk). So 10 is the potnt with the least loss for its specific
Fegularization loss. As we chn seo, at that point
+ downwards the risk has a large eigenvalue, as the risk increases
rapidly. And as we've stated above, the value of w along that
dimension is not reduced that mucl
- from right to left (starting at w") the risk has a very low eige
value, and hence w is reduced much more along that dimension

D. (L1-Regularization (sparsity inducing))

Q) = S, A \IW‘H =Sk N o bl A0
—14.11.1 — i via Ci
An alternative view on regularization is for a given r > 0, solve
min_ R(6.
a.lel<r ©)

So ng the size of the coeffi
constrammpz 76 16 somo ball

The Simple Approach To This
descent,

nts indirecty, be

projected gradicit

ol

6(t+1) =1(0(t) - nVR),  I.(v):=

So we're essentially clipping the weights.

we have that

() = nVaRl|gq) ~ 6(t) — nH(8(t) — 07)

So (as seen py

ot +1

Now, subtracting 6% on both sides gives us

~ (- qH)(0(1) — 07)

the same trick as before that we can diagonalize the
's s.p.s.d., so H= QAQT. Inserting this gives us:

~ (1-1QAQ")(0(1) — 07)
Now let’s have a look at everything w.r.t the cigenbasis of H, let’s
define 6 = Q0. Then

6(t+1)—
Now, ming 0(0) = o (and inserting and using it) and a small 7
(¥i: 1= nAil < 1) one gets explicitly

() ="~ (1-nA)'G

40 with upper a%s. on eigenvaluos

o) -0~

Now we'll use

hessian H as

o) -0~

(L= nA)(@(t) —87)

Thus (comparing to the previous analysis) if we can choose f, 7 5.t

(I—nA)" L XA+ A1)~
which for ne; < 1 and €; < A can be achieved approximately via

performing ¢ = 2

So early stopping (\\p to the first order) can thus be seen as an
approximate Ly-regularizer.

= 14.12 = Dataset
Applying some transformations to the input data such that we
know that the output is not affected. E.g., for i
slight rotations, scaling, slight shearing, brightness
up data, but: there are approaches to incorporating this into the
radient instead of the inpu data.

1. Only one output at the end
om0 =y =y
And then we just pass this y to the loss R.
2. Output a prediction at e\'ery timestep: y’ And then

use an additive loss functio

P -
Ry oy =Y R =D R(HM;0)

+ Markov Property: hidden state at time ¢ depends on input of
time ¢ as well as the privous hidden state (but we don’t need

e state evolution function F is indepen-
v 0)

dent of ¢ (it’s just parametrize

Feedforward VS Recurrent Networks: RNNs process inputs in se-
quence, parameters shared between layers (same H and F at every
ume,mp)

in Networks
The backpropagation is straightforward: we propagate the deriva-
tives backwards through time. So, the parameter sharing leads to a
sum over ¢ when dealing with the derivatives of the weights:

Algorithm 2: Backpropagation in RNNs,

(Blue terms only need to be comp. for multiple.
// Compute derivative w.r.t. outputs

utput RNNs)

Compute 28 95 .. 0% -

/7 Compute the gladlent Vrt. all hidden states
om om 2y,

ont © i oy ant

for ¢ (T — 1) down 101 do

an ottt oyt
=3 ah:w e+ X 52 ‘ ot

— 14121 // Do back over time for weights and biases
Instead of angmenting "he dataset one could bulld an architecture =
that is invariant to certain #2 T, ﬁr =5, m,Tf atony
First, we distinguish the following terms: Ters say we have some
x and apply the transformation x’ x). Then for our neural = or 5t ot
network F bt Frf =Tl ool e,
- D. (Invariance) means that F(x) = F(r(x)). ot
om T om bl _ 7 s
+ D. (Equivariance) means that 7(F(x)) = F(7(x)) SRl T = i o - oh

So applying the transformation before or after applying F* doesn’t ' H .

change a thing (e.g., convolutions and translations are equivari- where i

ant) =T ]‘rr =St ot
B TNNE Where the Rist Tayer 15 a are Tavariant @ | 01 =lou eyt T
image translation. Hence, it would make no sense to augment the oyt
dataset of images with translations. aves computation and | 2% « 271 2 s = =L ﬁ
memory not to do this. So if we have an architecture that is invari- o 2vj )
ant to certain dataset augmentations the augmentations become where &7
obsolete. So, if you can, choose an invariant to make
your life casier in the first place ont-1

njecti i om i

— 141221 uect on of Noise Note that £« $IL, 5y F‘ﬁ

At various places: inputs (noise robustness), weights (regulariza-
tion), targets (network becomes more careful)

Since for & # j the summand is zero (similarly for us; and vyy).

—14.12.3
If we have a lot of dat only a few datapoints are labeled
raining may become useful. You may build
- an antoon o learn how to represent
Jour data (lcarn features). Then, wo rain o supervised model on
top of these representations.

—14.12.4— Multi-Task Learning——w———————
If we have different tasks that we may want to solve, we may share
the intermediate representations across the tasks and then learn
jointly (ie., minimize the combined objective). A typical archi-
tecture would be to share the low-level representations, lern the
high-level representations per task.

= 14.13=D
Dropout idea: randomly
work

“drop” subsets of the units in the net-
So more preciely, we'll define a “keep” probability «! for unit i in
layer .

21

+ typically: 7 = 0.8 (inputs), 7'Z! = 0.5 (hidden units)

- realization: sampling bit mask and zeroing out activations

- effectively defines an exponential ensemble of networks (cach of
which is a sub-network of the original one), just that we sample
these models at training-time (instead of during prediction) and
we share the parameter

- all modles »h'\Pxe the same weights
standard backpropagation applies.

This prevents complex co-adaptions in which a feature detector

is only helpful in the ther specific featw
detectors. Instead, each neuron learns to detect a feature that
is generally helpful for producing the correct answe

must operate. (Hinton et al., 2012). This enforces the features
to be redundant (not too specific about one thing in the image)
and also to build on top of all the features of the previous layer
(since we never know if some are absent).

Benefits: benefits of ensembles with the runtime complexity of the

training of one network. The network gets trained to have many

different paths through it to get the right result (as neurons are

turned off)

Equivalent to: adding multiplicativo noise to weights or training
exponentially many sub-networks 37 2" wher n is the
number of compute units (so at each iteration we turn some nodes
off according to some probability). So we're getting the benefits of

ith the runtime complexity of just training one network
Ensembling corresponds to taking geometric mean
arlthmetic) (st bhave to do with exponential growth of networks)

of

the ensembles:
= YL P Pl

Having to samplo several sub-networks for a prodiction is somewhat
inconvenient, so the idea that Hinton ct al. came up wit caling
each weight w!; by the probability of the unit j being active

Pensembie (] x)

@l el ray
This makes sure that the net (total) input to unit ! is calibrated,
ie.,

Sttt L [24 ]zw R

It can be shown that this approach leads to a (sometimes exact)
approximation of a gemoctrically averaged ensemble (see DL-Book,
7.12)

Actially, for each 5 vadiis 7 that
would make the two problems equivalent (if the loss is convex).
HiGion iade Soiie Fesearch T 20T3 aid Fealized that

0 not affect the initial learning (as the weights
arc asmumod to b small a tho beginning), 4o wo wont clip the
welghts. So the constraints only become active, once the weights

constr:

arg
Alternatively, we may just consteain the notm of the incoming
weights for each unit (so use row-norms for the weight matrices)
This had some practical success in stabilizing the optimization.
— 14.11.2—Barly
Gradient descent usually evolves solutions from: simple + robust —»
complex Hence, it makes stop training early (as
coon e validation loss fations/increases). Also. compuiationally
attracti

Since the weights are initialized to small values (and grow and grow
to fit/overfit) we're kindof clipping/constraining the weight sizes
by stopping the learning process earlier.

Let's analyze the situation closer: If we study the gradient descent
trajectories through a quadratic approximation of the loss around
the optimal set of parameters 0. We've derived prenou:l) already
(and show it here again with slightly different notation

H(0 —0%)

VaRlgy ® VaRlge + Ivry|ye (00— 07) =
This is just because the Jacobian of the gradient map is the He
Hpz from before.

BaciLot's say that at the snd we selocted sach unit with » probabil
ity of 0.5. Then when typically when we're finished with training
our neural network, we'fo going to multiply all the Wwelghts that we

ob h 0.5 to reduce the contribution of each of the features
(tnce we'll hawe all of them). 8o with this trick for the brodiction
we can just do a

ingle forward pass.

Disadvantage of CNN: pick right convolution E
small: no context, nm la.rgv s 1ot of data needed, anyways: 16ss of
memory at so

Advantage of R e capture better the time component,
memorization of past in hidden stat

Given an observation sequence x‘, ,xT. We want to identify
the hidden activites h with the state of a dynamical system. The
discrete time evolution of the hidden state sequence is expressed
as a HMM with a non-linearity.

=(U,W,b,V,c)

lossy

h' = F(h'~! x"0), ' =o.

F:=coF, o € {logistic,tanh,ReLU,.
F(h,x;0) = Wh + Ux + b,
y' = H(h';0) := o(Vh' +¢),

There are two scenarios for producing outputs

and/or
One of the typical problems that RN e 1 that the gradients
may explode or vanish. Remember that the gradients that we with
MLPs were:

ViR =y JpLVyR.
Since we're sharing the parameters we have Ve: F* t evalu-
ated at different points. Now, if the sequence is very long (large
T) then we're multiplying a lot of times the same jacobian (yet
evaluated at different points) by itself.

D. (Spectral Matrix Norm (Largest Singular Value))

Al fis
.llxll.

[1A%]; = omax (A).

T:IAB|, < [[All; - B,

Now, let’s have a look at the product of Jacobians for RNN (single-
output case, otherwise it would just be a sum of longer and longer
products of Jacobians). Let’s have a look at the gradient of R
w.rt. some input x' at iteration ¢: This is a good formula for
backpropagation through time!! If we did this w.r.t. the parameters
we'd have to sum it up over ¢ = 1 to T

o g Oh'on'Tontt:  onT ! onT oy oR
%R = 5t okt OhtT T ORT-% GhT—1 OhT OyT
x . |
= Pl T ey e TE| ey Talur Ty R

el mir (lel L I

e

Ut )W
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T1 ding(o’ (Wi
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Note that when talking about J% we mean the Jacobian w.r.t. h
(and analogously x). We need to make this explicit, since F acutally
s two arguments. Now, the Jacobians were just computed as

follows
oF, ont -
L o(Wh'™ 4 Ux 4 b),
(G201 I on T (Wh'™! 4+ Ux' +b); i
J';.‘ A diag(o' (Wh' ™' + Ux' + b)) - W
=Sttt
Now, for the cigenvalues of these Jacobians, we have that
Setpt-1 <1 [¢5)

if o € {logistic,tanh ReLU}. Hence S, ., will make the gradi-
ents vanish over time (when the products gets large, so t is small)
if W doesn’t have big enough eigenvalues.

Ex. Con 2 T was a movi w, then the
gradionts for tho first part of the Yeview would vanish, and only the
gradients of the last part of the review would exist.

So, let’s have a look at what happens to the spectral norm of this
product of Jacobians:

T soonnw| €

w] I

Now, this means that
I 0ax(W) < 1, then the gradients will vanish

1V, Rlly € C - Omax(W)T

whee C s just some constant that depends on the other matrix
md ‘vstor norms,

sely, if nmx(w) > 1 the grm.em may, or may not ex-
plode - we can's seally day something

This was observed and published in a paper by Pascanu, Mikolov,

Bengion in 2013.

— Fixing 'Vanishing
- When the gradients are exploding a common heuristic is to clip
the gml.g.m (shring the gradient norm once it gets too big),
so-calle clipping,

VxR = VxR ——orie——
max (|| Vul| R, Ymax) -
This ensures that the gradient norm is nover greater than e
+ However, when have vani ents over time, then this
means that the RNN is fcvgmmg the past after a few timesteps,
woually then the RNN s not perfo rming very well. This is
Rardor to fix, and we'll sce later how this Is solved with LSTMS,
— 15.0.1— Backprop Over Time
For multi-output los

al, av‘ dhy
D SHNETETTS o MY |y A ey

—15.0.2—Bi-D

So, additionally, we're define a reverse order sequence

g = G(x' g0 = o(Px' + Qg +d), withg” =o
the function F to compute the normal order sequence stays the
same, and the output transform H becomes now a function of both
hidden states:

H(h',g":6)

The nice thing is that we can compute both sequences (the 1oxward
and backward sequence) in parallel (or independently’ rify
this in the graph. The back-propagation through time is r.lune in
reverse order (ox the reverse order sequence.

— 15.0.3— Deep Networks

Deep recurrent networks (DRNNs) just use a deeper network for
the evolution function. So we have hierarchical hidden states. Note,
that this can also be combined with bi-directionality.

®
Co
oL
©)

t=Fhth )

hu Flpt=1 ptio1g)

Hiy"

—15.0.4— ility Distributi or
Goal: Define a conditional probability distribution over output
sequence yT, given input sequence x

So the idea would be to do a step-by-step prediction:

T &

Now, in the naive RNN implementation P (y') only depends on
¥4 through h' sin

P(yr

AR E s P (v

Problems when learning RNNs One of the problems that we
may have when we're learning to predict sequences to sequences
is that tho elements of the predicted sequence aro somewhat un-
correlated if we don’t train the right ually

better to consider what we prodicted for the "mghhcunng ‘lements
when predicting an element of & x,if the prediction
i rong it wonld be acttilly mislendiig, and 25 the emor wonld
et propagated. A btter approach to do this is sto foed in the right
prediction as the neighbouring predic ing tine such
that the training and sequence doesn't gvt il of track bocs
one mispredic

D. (Teacher Forclng) That's why output feedback was intro-
duced, with output feedback the output function takes an additional
input y*~! (for unidirectional RNNs) such that we can consider
what the previous sequence prediction was.

¥y

ve can ses in the picturs we foed n the true valus during training,
and we use the predicted value at test tir

H(h',

QQ
[OF°)
\‘k@‘”
NGR0

This technique is called teacher forcing (even if we do a wrong
prediction, we force it to be the true value

. (Curriculum Learning) Another related idea is curricular
learning where we alternate randomly between teacher forcing and
using the actual (and maybe wrong) prediction. So even if there
are some wrong predictions, we force the network to come to the
right prediction at some point and it may recover from the small

= 16.1—Memory U
Problem with RNNs: vanishing gradicnts (changes in the input
a long time ago won't really affect the output/loss), so it’s hard
to learn long-term dependencies as the information in h, fades-out
when combined with current input x.

Goal of Memory Units: model long-term dependencies.
some kind of memory.

— 16.1.1 —LSTM:

It would be nice to have something like a gated unit

have

read ht

N /]
N l
The LSTM adds three more gates. The idea is that the information
ows on a conveyor-belt where we selectively forget, store and
output as follows
- Forget Gate: This is just a one-layer neural network, where
£ = o(Wsh'™ 4 Usx' +by) (forget)
Using the previous output vector, and the current input it com-
putes some weights, which are used to multiply the content of the
memory (by a number between 0 and 1) in order to selectively
forget some entries in the memory.
- Store/Input Gate: Here we'll compute

it = o(Wih' "'+ Uix' + b)) (input)
‘which determines how much we want to input into the memory
(how much we want to store). In many cases, this is just mapped
asi’=1- f' BuL this model illustrates the flexibility th’\t we
nmy want to Further, given that we'll be opening the g:

what should we »toxe Lhexe’ "This is what is computed Llucugh

T = tanh(Weh'™! + Uex' + be).

And in the end we'll update the memory by combining the
weighted sums of the stored and new information

o _ ¢ .
ct=  f ®©

forget factors

o1 i 5 T
c + ol

curre Yctors

- Read/Output Gate: In this gate we decide which information
that we want to get out into our output (the new hidden state):

o' = o(W,h'™ 4+ U,x' +b,) (output)
h'= o' @tanh( C' ).
what 3wt

Note Lhat when stacking h'" ! and x* we may just represent things
as follow:
we U] [h] 4 b = WER 4 URx 4 b
P

— 16.1.2— Other Variants of LSTMs
— LSTMs with

~ 16.2— Differentiable Memory
D. (Neural Turing Machine)

NTMs are very reminiscent of a Turing machine, but: each cell
M€

In contrast to RNNs, NTMs use an external memory to wl

-16.4— Networks
Good to process trec-structire, e, from a parser (more depth
efficient O(log(n))). Gives a single output at the root.

R? x R? - R?

h™ = F(h™eft, h"risht)

Here we'll look at what we can say about a distribution of X, when
we have some samples x1, ..., xy. Unsupervised learning is the
most. dangerous thing that we can do (dangerous if we don’t know
what we’re doing). Unsupervised learning usually is hard, becanse
. The final goal of unsupervised learning is
density estimation - so, understand the distribution that the d'\tn
is coming from. Other things we might strive for is interpretal
of the results we've learned about p(z). Amother key aspect of

reul md wme aA:coxdmg to some i

w that can become very useful. We may have

mese Jectors in memo.y, and then we may search for some vector.

ter the product is with a vector, the greater our at-

Lcnuon Will be for that vector in the memory (via the attention

distribution).

So the operations that can be done are the following:

Compute the attention distribution: (ari);, &y > 0 s.t. 3,
Read: out expected memory content: 1+ 3, a; M;

3. Write: Now, given that we have one value that we'd like to write,

we'll write it to the msmorv location with the biggest attention:

(B)iy Bi €[0:1],  M; + (1= Bi)M; + Biw,

nally, there’s one value where we have a lot of attention (curse
of dxmensmnalny) an lots where we bave little attention. Fus-
ther, as we can we'll write a lot so somwhere and a little
bit fo every\vhere else. The reason we're using a sioy wly varying
B is th Want 1o be able to take the derivative (f it wag
just 0 or 1 e couldns take the derivative). So this is why these
things tend to be soft.
The typical memory controller works as follows:

For a query vector see which memory cells get the most attention.
Normalize the attention distributi

There aye a bunch of other LSTAMs that have heen invonted.
change that was done with LSTMS was: LSTS with peepholes
Where each of the gates also is allowed 16 ook at the mermory (Gors
& Schmidhuber, 2000).

Jo =0 (Wp[Compyherw] + by)
ir =0 (Wir[Comyhuy ] + b))
00 =0 (W, [Ceohecr. 2] + bo)

This makes a lot of sense if we start multiplying by a lot of zeros
when we're carrying the information out.
— Coupled Forget and Input Gates

=

=fixCra+ (L= fi)+ Cy

Another variation I to use coupled forget and input gates. Instead
of separately deciding what to forget and what we should add new
to, we make those decisions together. We only forget

D. (Gated Unit)

The following picture illustrates how we have a memory unit where

we can store, read and delete information illustrated by the gated
ts,

N

N

can be for a long time (doesn’t
away as with RNNs). Further, we can delete something in
memory in one timestep (without having to fade it out)

when we're going to input something in its place. We only input
new values to the state when we forget something older.

— GRU Networks (Gated Memory Unit)

(W, [y, 24))
(W [re % heey, a])

he = (1= 2) % hyy + 2% hy

hy = tanh

This is basically a simplification of the LSTM that we've seen where
we have only one state. Usu’\ll\, thcac ones tand to be much fastor to
traln, It combines the fox nto a single “update

o ergos e ecll tate and hidden state. and makes

Py
5

e It al
Some othor change

D. (LSTM) Long Short-Term Memory: a
for long time and forgetting it fast.

An LSTM is just a complex unit for memory management to achieve
these objectives. It has the following computation graph

-

0 - > <
paaon

WX Concatenste o
Tanter o

Now an LSTM has two memories:
+ Cy is the main memory in the LSTM (a vector). That's where we
store all of our information. The memory we'll control through
the gated uni

he is our previous output. So it’s not our memory, but it’s
what the sequence model ontputs at timestep . This could then
Possed further to & prediotion networ

—16.1.3—U
Problem different durations for same thing
“Theee houssse iis new.”

“The hoouse iis new.”

—16.1.4—C ist Temporal C N
Let’s have a look an approach with LSTMs on hwo to solve the
problem of unsegmented sequences.

The connectionist temporal classification allows to estimate the
sequences of unsegmented data:

Acutally, it’s a very

wplified model (huge simplificat

.
ITv-
;

P(r|x)

where

% s the sound that we had, segmented every fow millcconds,

+ m is a distribution over all p les + blank. Note that
Tlank docen't mean wo souted 1t means I dont Know

So it assumes that cach of the labels that ting aro indepen-

dent - ally the point where we can say that that doesn’t

make a st Even though ' a uge simplifcation it worke very

Thc nest step is to take the sequence of the predictions (if whe
have two “a” “a”, then most likely there should be just one “a” and
the et should be something that correlates to 2]
So the next idea is after having the sequence of pre
tions we'l add all the potential probabiities that actually mean
the same thing.

o atton e previous mtcm

Comoive the the sttention if noeded (abiity. 1o shft attention
relative to content-selected locations)
additionally sharpen the final attention distribution

then do your operation (read or write) according to the attention
distribution.

learning is: “I don’t know what I'm looking for until
Lfind it

= 17.1—Density
D. (Density Estimation) is a standard problem in statistics and
unsupervised learning. It's used to learn the distribution of the
data. Classically, we use a parametric family of densities

{re |0 €O}

to describe the sot of densities that we may model. Usnally, the pa-
e stimated with MLE (expectation w.t. the empirical
distribution)

07 = arg max Ex poyy,. [05(pa(x))]
i

Howover, real data is rarcly gaussian, laplacian, ... 5. images
the fact ‘that in general we cannot solve for py for a parametri
Ruction makes thic tack quite comphicated

6 When ustig & presribed wiodel pp we Tiave 1o

- ensure that pg defines a proper density:

/ pe(x) dx

- and to be able to evaluate the density py at various sample
points x
+ this may be trivial for models such as exponential families
(simple formulas
+ but impractical for complex models (Markov networks, DNNs)
Now, the question is what strategies can we use for more complex
models.

paraimetie and Tiodel

typical xaimple Toi
is kernel- dcnsiw estimation.
D (Kérnel D e A sample,
and k a kernel it Rt 2 0 then Ui estymator i defmed

Tal) %i‘mvxn Ly(z=2)

T problem With This 75 that The Tate of convergence 1s 1o (1og(n))
- this is extremely painfully slow. This is just a guarantee in general
when we know nothing about our density.

An alternative is to use unnormalized models (non-parametric:
the number of depends on dataset size). These then

These opemmm are all as we're using
and not the values 0 o resembling architectures
are! ewral Pandom Aceess machines, diforentiable data trctures
(stacks, queues).

Now, NTM architectures can learn loops and simple programs.
However, no real-world applications have been developed with this
so-far,

= 16.3 — Atten

D. (Attention Mechanlsms) offer a simple way to overcome

some challenges of RNN-based memorization. With attention mech-

anisms we selectively attend to inputs or feature representations

comD\chd from inputs.

+ RNNs: learn to encode information relevant for the future.

B iR S R R rp et AN

Both ideas can be combined!

B [T have @ sentence in Bnglish and gne in Germnan the question
we match one to the other. ith CTC was

that if things are changed in order, th

Bocause the CTC dossh't process every. mpm before it produces an

output. Attention will provide a mec to deal with this.

So we'll sce how we can do sequence to sequence learning. The
idea fairly simple:

Let's say we have a sequence ABC and we
To acheve this we'll use the so-called

So what we'll do is
- we'll encode the sequence (c.g., sentence) into a vector, and then
+ we'll decode the sequence (e.g., translate) from the vector (w/

output feedback) into another sequence.

So the probability that we want to determine is

P(y‘,., X R

The issuo chat we have here s that T, and Ty have variabls lengths,
d th nce between ngths is not always the

o i hard to match one >equence to another.

learning will computc a Rmetio

¥

Now, sequence

represent improper density functions:

Polx) = o - palx)
4]

Finding the normalization constant ¢y might be really complicated,
50 we can only evaluate relative probabilities. Further, here we
the log-likelihood, because scaling up By leads to an
unbounded likelihood.
he Gistih sl 7 1§ Thsre ais alaiiiarive eatiimation ineihio
Wit e e pesmiite s
look for properties of p.
on our prior knowledge of p
problem is in order to put the prior knowledge into the model that
we want to do. This was already important in supervised learning
(.g., CNNs with several layers for images), and is even more
portant in unsupervised learning. We have to do the same thing
there without knowing what our final goal is.
Finally, Hyvarinen came up with the following idea in 2005, He
asked himself whether there’s an operator that we can apply to
7y that does not depend on normalization. - The answer was yes!
Instead of estimating py, we estimate log py.
D (Score Matching | 2008))

we do not look for the exact t we

VilogPy, o= Vxlogp

Minimize the criterion

J(0) =E [llve — vl

or equivalently (by eliminating ¥ by integration by parts)

12
Db, — 5
§‘<w‘ 30

F(x',...,xT%) = “thought vector”
which will be & vector which will have all the at
we need from the input sequence to compute the output Ueament
This F is the so-called “thought vector” (Hinton). So F will be

computed via an LSTM
To produce the output sequence well use another LSTM that takes
as input the thought vector F plus the output that we'll be produc-
ing (output feedback)

— How to make the RNN Encoder/Decoder Work?
The following things were discovered by Sutskever, Vinals & Le in
2014:

+ Use Deep LSTMs (multiple layers, e.g., 4)
+ Use different RNNs for encoding and decoding
- Apply beam search for decoding
+ Reverse the order of the source sequence

- Ensemble-ing

For a machine translation task this gave state-of-the-art results on
WMT benchmarks. However, traditional approaches use sentence
alignment models. We still don't know what is the equivalent in a
neural architecture
—16.3.1 with Attention
The issue with the encoder-decoder architecture is that if we're
translating a very long sequence, it might have the issue that sud-
denly we liave to store the entire sequence in a singls vector. But
when we as humans tra translate small parts into small
T order 16, understand this better lot's hove & at a
concrete example. Let's say tl want 10 transiate the following
sentence from English to French.

+ bi-directionality (it's good to know future and past context)

: select wsoful hidden states based on atention

. outputted workds might have slightly different order

+ Note that if we don't iependencies that are out of order

we can use the CTC approach.

This can be by sampling.

TG AT probloi With this i That Tt assurics nhat e EWo Tioral-
ization constants are the samel

-17.2=

*xn} CRY
Goal: Compress the data into m-dim.

Given: data points {x, .
(m < d) representation.

D. (Autoencoder) any NN that aims to learn the identity map.

RO) = 5= 3" I = FuGo2 = Bxmpeasy (€06, (1 0 GY6)]

2 1 2
00 %) = 5 lIx — I3

Typically, the network can be broken into two parts G and H such
that

F=HoGmxrx

s Bneoder: G=Fo. ool Y S R" x s x
- Decoder: H = Fy, R R 2oy
oper 11 wsualy s “botlencd” ayer

. Just a special case of a feedforward NN, that can be trained
through backpropagation.

Auwem oders provids & canonical way of repreaemtation learing
(since NNs naturally do this). Note, how the data compression
(learning compressed representation) is just a “proxy” and not the
real learning objective of the network (identity function)




—17.2.1— Linear
D. (Linear Autoencoder)

A linear autoencoder just consists of two linear maps: an encoder
C € B and a decoder D™ The objective it minimizes is
then:

RO) =5~ Z [Ix: = DCxiI3

So it’s a NN with one hidden layer (no biases and linear activa-

Depending on whether z is continuous (e.g., as with PCA) or dis-
crete random variable (e.g., GMMs) we'll be using the Lebesgue
integral or counting to integrate/sum it out.

A typical approach to for latent variable models is lincar factor
analysis.

— Linear Factor Analysis ———
{The ides oflinear factor analyss s to explain the data through some
low-dimensional isotropic gaussian. And the data is mapped/recon-
sirusted through some linear map to/from the lower.dimensional

tion functions) which will contain the
z=CxeR™

D. (Linear Autoencoder with Coupled Weights)
Then, we define D := CT

D. (Singular Value Decomposition)
Recall that the SVD of a data matrix

is of the following form:

X= U disg' (01, Ominin) V',

zern

And the matrices U and V are orthogonal - 50 we have an orthogo-

nal basis. Further recall that via the SVD we can get the best rank
approximation of a linear mapping. It also is a decomposition

that preserves as much of the variance (o energy) of the data for a

predefined number of desired basis vectors to represent it

— Optimal Linear C: i

T. (Eckhart-Young) For m < min(n, k) and the objective

_ argmin L)V,

5, S "HX—X”::U,.,de(U],

where the subscript m refers to the matrices of the SVD pruned to
m colun

T ¥ e TiGar aito-cncoder With i hidden s
cannot improve the SVD since rank(CD) < m. However, the
auto-encoder can achieve the result of the SVD.

space. The s done via a linear map W and then
Rffarent, gaussian noiscs are addad to the resonstrucied vactor (via
m)-

So the latent variable prior is z € R™ where

2z~ N(o.T)
and we have a linear observation model for x € R™

x=p+ Watn n~Ne5), 2:=dagol,....00)
Further note that
are independen:
. Lypn ally m < n (fewer fmmm than features
+ 5o fow factors account for the depencencies between many ob-
servables
+ The vector p is computed through MLE on the training set

1
;;,«

Usually we assume centered data, so p = o. Since p only
complicates the notation and is actually casy to determine.
Recall, that in the previous part when we were doing autoencoders,
the deviations that we were having for each of the components was
the same one | So we wanted the error to be the syme for cach of
the components. Now, with this model, with 7 we're allowing for
adisionat Resiblity for the oror. Thero will bs seme componenta
that we'll be able to explain with less error, and some with more.
So, 2 shoud capture everything that is important to explain the
data, and 1 can be viewn as noise.
Altough we're assuming that here everything s gaussian, in general
astering mechanism, where z determines some
clu:(ex componem: that are solocte
S he

Triodel

TGiven the SVD of the data X udm(m The
choice C = U, e squared reconstruction
crvor of a twollayer lincar auto-cncoder with m hidden umite
Proof.

DCX = U, UL USVT = U, (I,

e

o=V’ = U, (8, oV

And as we know from the Eckhart-Young theorem X = U,,, 2, VT
is the best m-dimensional appruxlmauun of the original data X.
Now, that means that we can do

si ul,
weight manng Dot docodts it encode network, since

Another thing to note is that the solution is not unique! For any

invertible matrix A € GL(m) we have
(UnAY)(AU}) = U, U
Lnh” ) (AU)

B &

Now, rest ng through weight sharing that D = CT will enforce
that

ATl=AT
hencem A € O(m) (orthogonal group, rotation matrices). Then
the mapping x — z is determined (up some rotation that we do
in-between, rotation and its inverse).
— Principal C Analysis
A way to solve this problem is through PCA. Fis
dati (pre-processing) as follows

.
.
:

st, we center the

Then we define
S = xX"

which is the sample covariance matrix. And then, in order to get
U we just do the singular value decomposition of S. If we relate it
to the SVD of X we can sce that

s=usv'vsu' =us’u’
So, the column vectors of U are the cigenvectors of the covariance
matrix. And U,, U], is the orthogonal projection onto m principal
components of S.
Note that if we wanted to get V the we'd just do the PCA with
§=X"X.

7.2.2— Non-Linear Autoencoders
Non-linear autoencoders allow us to learn powerful non.
of

near gen

. (Non-Linear Autoencoder) contains many hidden layers
with nonlinear-activation functios as we want g as there’s a
bottleneck layer) and train the parameters via MLE.

—17.2.
One may also regularize the code z via a regularizers ©(z). This
will give us a regularized autoencoder.

There are various flavours of regularization:

+ standard Ly penalty: ability to learn “overcomplete”

- D. (Code Sparseness) e.g., via 22(z) = A |1zl|,

+ D. (Contractive Autoencoders) Q(z) = X ||2||7.. This pe-
nalizes the Jacobian and generalizes weight decay (cf. Rifai et
al, 2011)

— 17.2.4— Denoisi

codes

X~ N(p, WW' 4+ 5)

Proof. This can be proven in three steps

1. We use the ts on MGF's of and their propertics.

M The insights on MGPs of multivariate normal distributions
*Ihién the proof is straightforward.

l( you need some refresher of some core definitions just have a look

at them (after the proof).

Let X := Wz s.t. x = g+ X + 1. Now let’s determine the MGF of

x:

My (t) = Ex |:eﬂx:| —E. [t 'W‘] —E. [C(W")T'} — MW,

N(o,T) and we know the form of a MGF of a normal
distribution, we can’ just plug in
r)t)

Now, since z ~

M, (WTt) = exp (%(WTt)Tl(WTt)) =exp (

So this gives us

Mx(

=exp (2 TWW)t )

which btw shows us that X = Wz ~ N'(o, WWT).
Now, we defined that x = X + 1 + . Now, in order to determine
the distribution P (x), we can just use the fact that the MGF of the
addition of two or more random variables is just the multiplication
of their MGFs

_ 1r T 11 T
= e (3 WW't) exp (G730 ) e (47
1
=exp (m'u + Em'(ww' + :)H)
From the form of the MGF My we can conclude that
X~ N(p, WWT 4 3).
o

of Factors
Now this seems to be nice, but again we have the non-identifiability
problem, since there exist an infinite amoum of solut s for any
W that is a solution. Just let Q be an orthogonal m x m-matrix.
Then WQ is also a solution, because
(WQ)(WQ)" = wQQ W’ =
The consequence of this is that the factors of the linear factor
analysis are only identifieable up to some rotations/relfections in
R™. Since we care what the factors in z mean we need to factor the
Totations to get a better “interpretability” of the representation of
the data in the latent space.
— Data C«
Now, how is the factor analysis related to data compression?
Encoder Step: Implicitly defined by posterior distribution

ww'

View

»(z]x)

LI VI R
6

One can prove that the posterior also follows a normal distribution
(see ttp:/ /cs229 stanford.cdu)

Autoencoders allso allow us to separate the signal from noise: De-
£ sutoencoders sim to loasn fostures of the original date.
that are robust under noise.

D. (Denoising Autoencoder) we pmmb the inputs
X X,
where 1 is a random noise vector, e.g., additive (white) noise
xy=x+m  n~Noo®D)
and instead of the original objective, we minimize the following
Ex [Eq [£(x, (H 0 G)(xa))]]
The hope is that we'll achieve de-noising, which happens if
Il = H(G )1

So this would mean that the reconstruction error of the nolsy data
the error we created by the noise we've added (then the
domoising works)

= 17.3—=Factor Analysis
— 17.3.1 —Latent Variable Anal

2
<l =l

Pl = N2 bzies D)5
where
'
o= W (WWT 4 2) 7 (x— )
o
By =1-W (WW i m) W
Further, if we assume that 3 = o°I and we let o® — 0 (the
for all the the same

and we let the reconstriction orror g0 1o 70ro), thon the following
expression just reduces to the pseudo-invers:

2

W (WWT 4 o%n) 0w e

C with the of zero s error:
Baix = W (x — )
By 0

So, if we know W and 3 is assumed to be isotropic with the error
going Lo zero the encodmg distribution gets very easy to compute.

Latent Variable Anal vides a generic way of defining proba-
bilistic, i.c., generative modelsr the so-called latent variable models.
They stally work as follo

1 Dsﬁns s atent variable 2, with B distribution p( )
2 models for t] on
B ool ot
3. Construct the observed data model by integrating/summing out
the latent variables
o= [ e x|z v (x\z) (tz 1t = Lebesgue
260 = [ p(a)p (x12) i) = {ﬁ: e < Lobeagu

Ex. (Gaussian Mixture Models GMMs)
z € {1,...,K}, p(z) =mixing proportions
(x|2) : conditional densities (Gaussians for GMMs)

Tm idea of latent variable models is very similar to the one of
autoencoders. The idea is to have some

- xer?
+ and we want to embed it into R* (k < d)
+ 50 we'll use z € R¥ (latent-s

ace)
" and ook at the conditional probabilities p (x ) for some x

Likel
Now, how do we r:tvma.tr W and 7 The idea is fairly simple.

Let’s assume that xi, ..., % "<

data matrix
L
[

and the empirical co-variance matrix as
Si= 23w

OB

Then, the log-likelihood of the data X, given A can be written as:

g (Tr (sA’ ‘) —log (dct(A)))

this can be verified by using the definition of . the cyclic
property of the trace, and then just write down the matrix-product
matrices and sce what is the diagonal of the resulting

N(0, A). Further let’s define the

i)
\

1T
—xx".
k

log (P (X; A)) = + const.

RSN

Tatrix.

Now, let’s compute the matrix gradients A to know the
equations that we need to compute the maximum likelihood:
VaTr(SA7!) = —A7'sA™
Valog(det(A)) = A~"

Now, setting the gradient of the log-likelihood to zero gives us the
following condition

Valog (P(X:A))
So, the MLE for A is just A = S.

sa'=1

=

But recall, that what we want is not A, but we want W and 3
However, we know that A is just the empirical covariance matrix,
and W will be the mapping to the low-dimensional space and 3 is

the reconstruction error.
A=WW'+x
Now, using the chain rule we get;
VwA =2W
VA =1
This gives us the following stationary condition for W given 3
S(E+WWHTIW = W
In general, finding W is not easy. However, a special case is if we
assume that B = 021 (isotropic reconstruction error/noise) and

‘WTW = diag(p?), then by Woodbury’s formula we have simplifies
to:

(o1 + wWwT) W = Wiag(

1
0% +p?
Putung thlb back into the stationary condition, for each column
of W we get an eigenvector equation:
SW = diag(\)W.

Then, if u; is the i-th eigenvector of S, then

max {0,\; — o } .
{or-o7}

Sw; = (0% + p)ws

wi=piue, ol

This gives us the probabilistic interpretation PCA and showed us
how we can derive the PCA as a special case for 0% = 0 (Tipping
hop, 1999).
— Refresher on MGFs and Gaussians —————
D. (Moment Generating Function (MGF)) The MGF Mx of
a random vector X € R" is defined as

,vx]

Mx:R" 5 R
!
ThE Feason Mx T called moment generating Tunction 18 Be-
sents the Let

—17.4. 47Inlplm|l Model
Here we develop ical models via: generating stochastic mech-
aniom o simutation process

Deep implicit models

- latent code a € K%, 2 ~ m(a), e.g, w(z) =
- parametrized mechanism - R
stribution x € R™, x ~ py (x; )

 ampling is casy: random vector + forvard propagation.

No,1)

+ induc:

D. (k-Dimensional Tensor) T e Rf1xd2>dy
D. (Tensor Multiplication)

T Pooxy Q
erlate)  exlatt) " cgibre)

T = 3 Xeyo Q
PuRXra e X Rse TR e X Koy PRSI -
where each entry of T is computed as follows:

Tiyoesiiaskione = D,y Piaveotandtieds @ine iy b eske

Note that thi plications of o numbers

is just the sum of the mumi
d Q. Essentially, it's

mul
orteapanding locations in b &
the dot. product across the dimensions 51,

Note how this tensor-tensor-multiplication is isomorphic to some
matrix-matrix product

Tir, i viggnee 9y @y ke kg
Y Y e i e o
T. (Tensor Chain Rule)
Y(W): R4 %42, Rsxda| [(y): RAXds R
oy
e = B xazay F then we have: Tijir = pid

Generative Model

pe 2 our g n some underlying
structure of the data (clustering, dimensionality reduction. e
learning, density estimation). Now, generative modeling has the
following goal

Goal: given dm D, generate new samples from the same distribu-
tion paata. We want o learn puodet SImilar o paasa.

The nice thing is that the traning data is cheap, as we need no
labels. However, it's a har

Tn some way or another, any generative model has to cope with
density estimation (which is the hard task). This problem is tackled
in different ways by the several flavours of generative models:

cause it repre: moments of x in the following way:
K1,... kn €N, then Taxonomy of Generative Models o

. ok o

B [ebtak ot L § ‘Genraive models
ot ot52 - otk s dorsty mpich donsty

T (Uniqiieness Theorem) 11 77x and My exist for ihe RVS X Tractabl desty Apgrosimate densty M Cran
and Y and Mx = My then Vt: P(X =t) = P(Y = t) (distribu- P et p N o
tions are the same). e Vanatonss Markow Chai
Now, every Ty T nique Kind of MOF Torm. Herice, pore frmm———

MGFs can be very useful to deal with sums of i.i.d. random

wariables:

WU XTY Tare TidUthen Mx oy = Mx My
DI (Multivariable Normal Distribution)
X ~ N, E), X € R*
1 =E[X] (mean)

= E [ - p)x - )"
PDF:

] (variance-

variance matrix)
)

plxip, B)

MGF:

- 17.4—Latent Variable Models
— 17.4.1— DeFinetti’s Theorem ———
There’s another way of at looking at latent variable models which
is by the DeFinetty exchangeable theorem from the 1930s. This is
one of the foundations of Bayesian probability (although there is
nothing Bayesian in this theorem

T. (DeFinetti’s Theorem) For exchangeable data (order of
dataset doesn’t matter and they come from the same distribution),
we can decompose the data by a latent variable model

,\,
Pl e, o) = [ T (s 12 mo(a) da.

We eapect that those hidden variables are:
tionable and ever

Later we'll put our Ba)e;lan pum "o the distributions P(2) and
we then hope that the latent structure will tell us something about
the data that we didn’t know before.

The follwing paragraph of a paper shows why interpretability
important;

F. Doshi-Veletz et al. (NIPS 2015)

Objectives such a
pportunities for problems in

interpretable and ac-

mique challenge
While

data exploration present

imply list what observations are
also be able
succinet, as people are
cognitive entities that they can process at

2_Latent Variable Models —
Classically we define complex models via the marginalization of a
nodel

atent variable
S pe(x.2)

po ()

/!m(x,z)dz or po(x;

—17.4.3_Di ionali
the recurring things that we see in all of these models is
dimensionality reduction. So we have that

X = /(2B)

where
“XBNxD

TRRRX D, and
K< D.
So we have the data X that we're trying to understand. We'll try
to understand this data by a tall matrix Z and a fat matrix B. T
tall matrix are the latent factors that we've talking about (how do
we summarize the information of cach sample). And the matrix B
is telling us how we can recover the original data from the summary.
Most of the unsupervised algorithms can be captured in this general
ramevwor
Depending on f(
- Principal Component Analys
(L

ar)
B Nonneguwe Matrix Factorization
iE I 1.

) and Z and B, we arrive at different models:
/ Factor Analysis

olu” or Bernoulli model
Honnegative matrix
- LLE/Isomap/GPLVM (here we also try to do PCA or Factor
analysis with nonlinear components (with p.w. linear compo-
nenn»))

and bot Z and B have to be a

. Boltzmann Machine
(i i s W B lscrete)
- Dirichlet Process (aka Chinese Restaurant Process)
et Process (ska Indian Buffet. Process
+ Tmplicit Models (e.g., Generative Adversarial Networks)
(here all the information is moved to the function f instead of
computing the matrices B an

- explicit _density estimation: explici
Pmodel (X)
- tractable we can comute prodel (X)
roximate we approximate Pmodel(X) in some way
- implicit density estimation: learn a model that can sample
from prod (x) without explicitly defining it

ly define and solve for

Now, the solution to this is that in addition to the decoder net-
work madeling py (x| z), we define an additional encoder network
45 (2| x) that approximates pg (z

9 (2]%) = po (2] x) = =
This will allow us to derive a lower bound on the data likelihood
that is tractable, which we can opti

A common way to define these distributions is as follows: We as-
sume the latent variable to follow a multivariate gaussian (assumed
to be a reasonable prior for latent attributes).

Prior: z ~ A(o,

Enc. Netw. E: models g4 (z|x) with params ¢ and maps
B

X5 (s Do)

Dec. Netw. D: models po (x|2) with params 6 and maps
Py

22 (tcjz Bia)

Note that we use both diagonal covariance matrices for Sy and

xlz- 50 the output of both networks are just two vectors (one for
mean, other for diagonal)

Encoder and decoter netw. also called “recognition/inference’
networks.

m. g
and “gvnﬂ'auun

Now, equip our encoder and decoder networks, we can
Teonive Ui (log) Tikelihood as follows (note that we omit the
product for all points - you'd just have to put a sum over all the
instances in front of everything)

(log(ps(x)) does not depend on 2)
mx\zm(n)

o)

1087 (3) = Exvy e 10800 ()]

= o (el
o 81 e ) a8 2130
£, [iog (2 Muliply by
[ (Mt q,\(x\xl)] (liply by 1)

o R )

2150 7o (21 %)

(m\w Rule, ozl

(1) Decoder network gives us py (x| 2) and we can compute esti-
mates of this term through sampling. (Sampling differentiable
through reparametrization trick)
his term ensures that we reconstruct the data well
This KL term (betwveen "Gaussians for encoder and 3 prior) has
e form solution
his ferm ensures that the approximate posterior distri-
bution is close to pri
(8) pp (7| x) is intractable (as scen carlier)
KL-divergence is >
Now what we have is a tractable lower bound £ (so-called vari-
ational lower bound, or evidence lower bound “ELBO”) for the
likelihood
L(x,0,¢) < log(ps(x))
and we can take its gradient to optimize:
(07, 9") = argmaxg 4) 1, L(xD,0,9).
Reparametrisation Trick
The reparametrisation trick is needed to be able to backprop through
a random node, as backprop cannot flow through a randomly drawn
number.

(2)

=

But we know that the

2 N(pol)
s~ N(LRR') o

pto@e, e~ N(OT)
z=p+Re

Forward Pass and Backpropagation

Variational Autoencoders

Puting etom 212 ~ Niaje Bei)
-19.1m— (VAEs) kelihoogower bound ! Yl
Relation to Autoencoders — Dretant 49 e reconsucid [NNIRRIES

Reeall, that with we had defined a of — - Oecoder

two differentiable (non-linear) mappings x % z & X (an encoder E polalz)

and a decoder D) and trained it with the following loss [|x — /13
(approximating identity function) in order to learn some compressed
representatio ust contains the essence of x according
1o some meanimgtul featuredmmnaions

Further, we could then use I to bootstrap a classification model, by
first applying £, and then a classlhmuon network O and fine.tuning
them jointly on
So the lower- d.memoml 1eaL\ues z capt\ne the factors of variation

ata. And we can reconstruct an x from its compresse
representation x.

e

. ot ot ot Encodor nowork ~_
o every minbatch ofinpu

data: compute this forward ae(zlx)

pass. and then backorop! Input Dsta <

So, first we do the whole backpropagation. And then we just com-
pute the updalea to the parameters 0 and ¢ via backpropagation.

Ex (BI1P3)
L VAB us. AB: Autoencoders (compression)
+ Two step data compressio:

fog whm fiRY o IR, encoder; g: RY — RY decoder;
s
- £.55() 1ow-dim. encoding of o

- data-space metric A(z, fog(x)) (such as Euclidean distance is
used to setap o0 optimisation problem to learn the parameters
of f and

. Cannot generate data

VAE (data generation)
+ cast data generation as a two-step procedure through m:\rgm:\\r

isation of the latent code = via p(x) = [ p(x|2)po(2)dz. Due
to their probabilistic formulation, VAE allow to Ecncratc data
(x]2).

« by performing ancestral sampling z ~ po(z),
The ELBO formulation allows us to replace the true frivi
posterior p(x]2) by an inferance network (encoder) g(zlz),

- VAEs are rarely if ever used mpression tool; the in-
ference metworks (oncoden) it typically thrown awsy afier
training and their main purpose is generatior

2. You are training a VAE and obsérve that K L (4o (41 lpo(2)) ~
What are the consequences? What could cause such a scenar

+ Posterior Collapse (encoder): If the inference model gy (z/x)
collapses to the prior during training, the latent code = will
be independent of the data, hence we force p to explain every
« with every =.

« The reasons for posterior collapse are still being discussed
very actively, e.g. non-autoregressive (text domain) less prone
to collapse.

+ Counter measures (posterior collapse): (a) re-weighing the
KL-term, (b) anncaling schedules.

3. Let us assume you can compute K. L(%(z\x)\\pg(z\x) on your
trained VAE and you find out that K =0

Here we just sample from the prior, and
it through e metwork o ‘ot the posterior distributions
parameters, then we sample from that one.
F]
Sargaxizbom 212 ~ Nt Zoi)
N

i i

oA

0.1)

L —
polzlz)

= 19.2—=Deecp Latent Gaussian Models
= 19.3 = Generative Adversarial Networks (GANs)
GANa do nottry to model a density function but dircctly aim to
build » function to generated data (implicit ganerative method).

The whole motivated by a approach
in a 2-player game. GANs sample from a nlnple randon noiee
distribution anel try to learn a transformation (vie & NN) 0 a data

distribution.
(Discriminator D)
parametrized by 6

must be a difierentiable function

x & P (x comes from true data distr.) € [0,1]

(D) _

e SN £ [ o ee— )
s \

= Bxmpgaia [m] Ex~pgenerator [m]

= [ Paata (%) Ty d% = [ Prenerator (%) 7=y dx

Recall: we can get rid of the integral as it is just a function opera-

tor. Using the inverse of the operator, we can get rid of it and the

solution constraints on the optimal D(x) still remain the same.

= Paaa(X) iy

= Prencrator (X) Th5

Then we get the following stationarity condition:

for any pdaca (%) and Penerator (x) is always
o Paa0

Dix) = Pdata )+ Pgenerator ()

Note that V)y »Lmlon;\rlw condition we mean that Llus must hold

in the Nasl rium (where both players stop ac

es).

The optimal D(x)

em-

Estimating this ratio ueing supervised leaning is the key approsi-
mation mechanism used

What assumptions are ceded to obtain this solution?

We need to assume that both densities are nonzero everywhere. 1f
we don’t make this assumption then there's this issue that tho dis-
criminator's input space might never he sampled during its teaining
proce these points would have an undefined hehaviour
since they're never trained.

> & over sample sets S

. 2 20ym

Eales) - Bolef) < 1| SIKL@IIP) +1os (2L7)
Minimise the generalisation error = minimise KL and minimise the
expected empirical error.

How to use it in !rmnmq (PAC-Bayesian for DNNs):

1. Choose Gaussian P = N'(6g, Al), simplified: fp = 0, A =1

2. Gaussian Q N(s diag(s)), s;: variance in i-th weight

3. Can derive simple expression for K L(Q||P)

4. Minimise PAC Baues bound (typically: use surrogate loss)

Balef) + /> [KL(QHP) +log (2‘r)]

5. Generate iterate sequence 6' by SGD

6. Monte Carlo: cvaluate gradient loss on perturbed parameter
0~ Q0. 5)

7. Backprop with reparameterisation trick

0 =0+ diag(s)n, 1 ~N(©O,1)
8. Optimise jointly over 0,

=20. C ity of a DNN

Training Procedure: Use SGD-like algorithm of choice (ADAM)
on two minibatches simultaneously. At each iteration, we choose:
+ a minibatch of true data samples
- a minibatch of noise vectors to produce minibatch generated
samples
Then compute both losses and perform gradient updates.
05— 0= Vo, RO (0a)
057 0 — Vo, RV (6,)
Optional: run k > 1 update steps of D for every iteration (and only
1 update step for G|
So we alternate between
- Gradient ascent on
MaxX, Exvpyara [wuomx))]
Eamnta) [108(1 = Doy (Go, ()]
+ Gradient descent on G
mino, Eymp(a) [108(1 = Do, (G, ()]

+

D. (Spectral Complexity) Denote a DNN by A with W weight
matrices and p’ the Lipschitz constant of the £-th layer activation
function. Then for arbitrary reference matrices M* define

(H »‘HW‘MZ) (Z

z
where [|A]l2 = spectral norm (max
sum of Euclidean norm of the column:

T, (Bartlett) With various definitions as above: for all networks,
each choice of margin 7 > 0 and with probability (1 — §) over

. sy V2
Iow* - w913
Wiz '

ngular value of A; [|All2,1 =

R(A)

Test Error(f) < empirical v-margin Error(f) -
Q (Mlcg(max'wldkh - Jlog (,—‘,))

Take-away concept: The sror does not depend on the parameter
number but on the spoctral comploxity of the network

Note That this trafniig algorithin uses a otivated Toss
(that is o bit different) for the generator to have better gradients
when the discriminator is g

for number of training iterations do
i steps do

(=0,...., =M} prior p (2).
« Sample minibatch of m examples {z(", .., z("} from data generating distribution
P2
‘» Update the discriminator by ascending its stochastic gradient:

o3 (106 D)+ log(t - Day(Go, )

end for.

{z0,..., 2 y(2)-
® Update the generator by ascending its stochastic gradient (improved objective):
o, & 3" 08(Da, 6o, ()

end for

What prevents the generator from just learning about one specific
true image and then constantly outputting it? (as it would be
indistinguishable)

If wo're able to correctly play the Minimax game then G is not able
to comsistently fool ays generating the same sample.
Would learn t6 rocognize. that sumple and reject it as fake.

Tmprovements of this model could use importance sampling in both

latent and true data space to improve G.

Non-Saturating Game

Here we change G’s loss as follows

R = —1E, xgu) [D(G(2))]

Hence the equilibrium is no longer describable with a single loss.

Now the generator just maximizes the log-probability of the dis-

criminator being mistaken. G can still

learn even when D successfully rejects all generator samples.

The problem with the Minimax game is that when D becomes to

smart, the gradient for G goes away.

Ex. (E11P3)

1. Describe the mode collapse problem of GAN:

+ Mode Collapse: The failure of the generator to produce vari-
ety /diversity of samples, by collapsing many values of z to the
3 ferred to as the mode collapse problem (partial

collapse often happens in practise).

2. GANs are typically trained by taking a single (or a few) update
steps for the discriminator in the i inner IOO]) and a single (or a
few) update steps for the generatos r loop. Explain
what would happen if we trained the dmcrmmmlur in the inner
loop to optimality.
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T. (Markov’s Tnequality) Let X > 0 be a random variable s..
B[X] < oc; then,

1

E
PX>t) <

holds for all ¢ > 0.
T. (Chebysev’s tail bound)

POX ~ BIXI > e < 5.

where o denotes standard deviation of X and ¢ > 0.
D. (Moment generating function) induced by random variable
X s defined as Mah) = Elexp(:)]
T. (Chernoff’s bound) for a random variable X

P(X — E[X] > 1) € exp(=A)Mx_ px ()

S AT S AT R A IR U
ing ChemofTs bound, we derive the following ntration for
Gaussian random variable X ~ A'(0,0?):

P(X - B[X] > t) < exp (72%) .

Proof:
Let p = E[X]. Since X is Gaussian, Mx . (\) =
Replacing this into the Chernofi’s bound leads to

22%/2).

Then, we minimise the RHS w.r.t. X and we arrive at the result.

exp(0?A?/2)
P(X — p > t) < exp(—At) exp(o]

D. (Union bound). The exponential tail bound are very useful
when we are using union bound, i.e. the following bound

«
LU B <3 P(E).

T. (Hoeffding’s Tnequality)
> 1) <o

1g
P(;Z/\‘fE[X]
25) < 2exp(—
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T. (Hoeffding-Chernoff)
P (‘E[X] ! o

Ex. (Moment i

function) for x ~ N(s, %)

- Tvaining the discriminator to £ the
the gradient of the g enerator vanishes
R 'a result th 1o learning signal for the

To prevent this from happening, balance between the two
players needs to be maintained (¢.g. through regularisation)

3. GANs are mostly successful for gencrating images. What is the

challenge of applying CANs (0 diecrete data?

s for discrete data: For the GAN framework to work, we

e to e bl 6 backprop from the discriminator’s output to

the generator’s parameters. If the generated samples from the

generator are discrete, the backprop can no longer procee

Fanction

B @Y st bea
by 6,

2 ~ N(, ) S x (one falsified data sample) (one may also use
another prior)
2z is sampled from the prior
domness)

istr. over latent vars (source of ray

What does this imply about the quality of the generative model?
« Tightness of the bound (encoder): The tightness of the bound
is important if a latent model is compared to a non-latent
probabilistic model for which the exact likelihood is available
The goal of variational training is to minimise the bound, not
fo make it ti
- Tightness of e bound does not certify a good generative
E.g. we can get a tight bound if po, po, ¢ are appro-
Pnatc conjugate Gaussians, yet Gaussian generative models
are usually not the powerful generative models we are looking
for.

Now the question 15 can we a8 # similar Kind of setup 0 use new
images?

VAEs define an intructable density function e () with a latent
= Hoving this [atent uasiablo allows us to network similar

table Tower bound for the intractable
Gertey Hinekion s thien devrved md cpnmlzc

samplo frony conditional
(complox NN)

Pmodat (X) i= pa(x) = [ po(2) pe (x| 2) dz
st repiCrencation”
(simple, ©i. MV-Ganssian)
‘With VAEs we assume Lhm. our data is Renerated from some un-
derlying unobserved representation z. We first sample z and then
generate some x from the conditional distribution. Now, we just

have to learn the parameters  that maximize the likelihood of the
training data. Unfortunately, we cannot optimize the likelihood of
our model for the data directly (as it’s intractable)

dz
Note that different factorizations of the distributions would also
intractab!

Po (2| %)

Sz po(z)ps (x| intractablel, tractable

ot

D tries to make D(G(z)) near 0 (for fake data)
D tries to make D(x) near 1 (x sampled from true data)

G tries to make D(G(z)) near 1

Com. In some sense G implicitly tries to make D(x) near 0 (since it
uses the negative loss of D) see Minimax game VS Non-Saturating

Minimax Game: Both D and G try to minimize and maxi
the same value function:

nize

V(G D) = minmax R

= i s B (10800, ()] + By [108(1 = D (Go, 2]

x))] -

x~paata [108(D(
(G(2))]

e~ pgemeratr 10801 - DGO

RE) = _R(w)

+ The loss R'P) is simply the cross-entropy between D’s predic-
tions and the correct labels in the binary classification task
(real/fake)

+ The equilibrium of this game is saddle point of the discriminator

+ I we look for this equilibrium the whole procedure reserblos
minimizing the Jonsen-Shannon divergence between the tru

and the generatos

- 30 s the logprabaniity of D hein correct

What s the solution D(x) in terms of paata and Pgensrator

at the equilibri

In the ethbnum it must hold that the gradient of the discrimi-
ator is zero, because the discriminator otherwise would improve

(thus change) itself.

4 GANS ve. VABs: Both are gencrative models with (complomen-
tary)

Jeature VAE GAN
well defined objective (casier training, evalua- o
tion metric): e
generation of discreto data: yes  mo
discrete latent v no  yes
Sharp images/samples: - no Ve

PAC Learnin,

error error(h) ,N,,[f[gf)w( )
€.6) criterion: LR < REET) 4> 1
{rong BA holds for arhl(ranly small ¢
ak PAC L. nontrivially lar

PAC learnability P[ LEE s
efficiently A poly time in + and &
Results:

R(&}) — infeec R(c) < 2supcc \R»( c) - R(e)|
Plsupeec [Bn(c) = R(c)| > €] S Xpl

Tmplying: R(c) < Rn(c) lug<6/2 )/2n

X shattered by A if
XAJA €A

{XAlA€e A} contains all subsets of X
Ve Dim of A

max{n : 3X s.t.|X shattered by A, |X|=n} = 2/4|
score Sscore(A,X) = [{X N AJA € A)|

shattering coeff 8
= maxx.|x|—n score(A, X)

1f Vi >2 (Va = VCdim. of A): s(A,n) <n¥A
P[R(c;,) —infeecR(c) > € < 85(A, n) exp(—ne? /32)
= 20.1=PAC-Bayesian Setting for NN
1. Notation and definitions (simplified >eumg)

+ O/1-doss, (1) = L/ () # )

- empirical error ¢f w.r.t. sample S, expected error ¢y

- generalisation gap:

5 o= max(0,e5 - §) < leg —ef| = [les — )% = 285

T. ( of measure inequality) For any p >> Q, P-
measurable function ¢ (random variable)

) < KL(QIIP) + log(Ep[e”])

T. (MecAllister) For fixed P and any Q, € € (0, 1) with probability

1
My (t) = exp [ ot gﬂz»]
L1 random variables x and y have moment generating functions
My and My, t

Myiy = My - My,

- Coupled activity propagation

XU 2 o(WEXQ)
- Denote by A the adjacency matrix of an undirected graph (sym-

metric). Augment via A
- Define degree-normalised matrix

Q=D 2Ap1/?,

where D is the diagonal degree matrix of 4, ie.
ay +38y

143 Ay

Design principles of Q: shift invariant, non-exploding (cigen-

values < 1).

D. (Linear Shift Invariant Filter). A lincar function H over a

graph with adjacency matrix A (possibly degree-normalised) is shift

invariant iff H(Az) = A(Hz), ie. H and A commute.

A lincar fiter ] is A-shift invasiant iffthere exists coefficients
H =000+ 61 A+0:A% + .. +0,A"

Ex.Use H = 001+ 0, A (obtain higher degrees by stacking filters)

LiLet A; > ... > A, be the cigenvalues of A := D~'/2AD~1/2,

then 1 =X, > X, > -1.

Proof:

2T (14 A)

2
- 2z = =
a2y —I— —+ L >0
“Z,:y Vi \/d; ;; (‘/d, NIy

We have two cases (for all ||| = 1):
1. Ap = ming {z' Az} > —z Iz
2. 1=a"lz > max,{z' Az} = A,

A has largest eigenvalue 2, source of instabilities,

- Heuristically fix t

14 D-V2Ap-12 , p-1/2ip-1/2,

which has now largest eigenvalue 1




