
Probabilistic AI
Probability & Statistics

Hoeffdings inequality:
P (|Ep[f(X)� 1

N

PN
i=1 f(Xi)| > ")

 2 exp
⇣
�2N"
C2

⌘
=: � ) N �

C2

2"2 log
⇣
2
�

⌘
.

Chain Rule:
P (X1:n) = P (X1)P (X2|X1)...P (Xn|Xn�1)
Bayes Rule:
P (X|Y ) = P (X)P (Y |X)P

x P (X=x)P (Y |X=x)

with Background :
P (X|Y,B) = P (X|B)P (Y |X,B)

P (Y |B)

Multivariate Gaussian
p(x|µ,⌃) = ((2⇡)d · |⌃|)�1/2

·

· exp
⇣
�

1
2(x� µ)>⌃�1(x� µ)

⌘

P (x|µ,�2) = 1p
2⇡�2

exp
⇣
�

(x�µ)2

2�2

⌘

Conditional Independence:
If P (Y = h|Z = z) > 0, then X ?

Y |Z , P (X = x|Z = z, Y = y) =
P ( X = x | Z = z).
Properties:
• Contraction: (X ? Y |Z)^ (X ? W |Y, Z)
) X ? X,W |Z.
• Weak union:
X ? Y,W |Z ) X ? Y |W,Z
• Intersection:
(X ? Y |W,Z) ^ (X ? W |Y, Z)
) X ? Y,W |Z

ICL Cond. Indep. (d-sep):
A path is blocked if it includes a node s.t.
• The arrows on the path meet either head-
to-tail or tail-to-tail at the node, and the
node is in the observed set, or
• The arrows meet head-to-head at the no-
de, and neither the node nor any of its de-
scendants is in the observed set.

Bayesian Linear Regression
Model : Y = X� + ✏, ✏ ⇠ N (0,�2)
Likelihood : P (Y |X,�,�2) = N (X�,�2)

Prior : P (�|⇤) = N (0,⇤�1)
Posterior : P (�|X,y,⇤) = N (µ� ,⌃�)
µ� = (XT

X+ �2
⇤)�1

X
T
y

⌃� = �2(XT
X+ �2

⇤)�1

(� � µ�)>⌃
�1
� (� � µ�)

= �>⌃�1
� � � 2�>⌃�1

� µ� + µ>
�⌃

�1
� µ�

Conditioning a Gaussian:
p(xa|xb) = N (xa|µa|b,⌃a|b)

µa|b = µa + ⌃ab⌃
�1
bb (xb � µb),⌃a|b

= ⌃aa � ⌃ab⌃
�1
bb ⌃ba

⇤aa = (⌃aa � ⌃ab⌃
�1
bb ⌃ba)�1,

⇤ab = �⇤aa⌃ab⌃
�1
bb

Gaussian Process
Distribution over functions.
Prior : P (f).
Likelihood : P (data|f).
Posterior : P (f |data).

Joint distribution of [y, yn+1] is given by
y|X,�2

⇠ N (0,XT⇤�1
X + �2

I), kerneli-
sed version:

p

0

@
"

y

yn+1

#
|xn+1,X,�2

1

A

= N

0

@0,

"
Cn k

k
T c

#1

A

Cn = K+ �2
In; c = k(xn+1, xn+1) + �2

k = k(xn+1,X); K = k(X,X)

p

0

@
"
a1

a2

#1

A = N

0

@
"
a1

a2

#
|

"
u1

u2

#
,

"
⌃11 ⌃12

⌃21 ⌃22

#1

A

a1,u1 2 Re;a2,u2 2 Rd;
⌃11 2 Re⇥e PSD; ⌃12 2 Re⇥f PSD
⌃22 2 Rf⇥f PSD; ⌃2,1 2 Rf⇥e PSD

Predictive density :
p(yn+1|xn+1,X,y) = N (µn+1,�2

n+1)

µn+1 = k
T
C

�1
n y; �2

n+1 = c� k
T
C

�1
n k

Bayesian Networks

Variable Elimination: (for MAP, MPE)
Given query P (X|E = e)

• Pick ordering X1, ..., Xn.
• Initialisation: fi = P (Xi|PaXi).
• For i = 1, ..., n, Xi /2 {X,E}:
. • Multiply all factors incl. Xi.
. •gi :=

P
xi

Q
j fj (or maxxi

Q
j fj).

• Renormalise.

Factor Graphs:
Probability measure factorises:
P (X1, ..., Xn) =

1
Z

Q
i i(XAi)

Sum-Product Algorithm (for MPE)
• Initialise µx!f (x) = 1
• Initialise µf!x(x) = f(x)
• Until convergence, pass messages
. • from node to factor:
µxm!fs(xm) =

Q
`2ne(xm)\fs µf`!xm(xm)

. • from factor to node:
µfs!x(x) =

P
x1,...,xM

fs(x, x1, ..., xM )·
·
Q

m2ne(fs)\x µxm!fs(xm).
The marginal is given as the product of all
incoming messages:
p(x) /

Q
fi2ne(x) µfi!x(x);

p(Xu = xu) / fu(xu)
Q

v2ne(u) µv!u(xv).

Parameter Learning:
ML Approach:
✓̂Xi|PaXi

=
Count(Xi,PaXi

)
Count(PaXi

)

(can use EM for incomplete observations)
Imposing a Prior : (Beta prior here)
✓̂F=cherry =

Count(F=cherry)+↵cherry

N+↵cherry+↵lime

Structure Learning:
MLE Score:
SML(G;D) = max✓{log

�
P (D|✓, G)

�
}

logP (D|✓G, G) = N
Pn

i=1 Î(Xi, PaXi)+C,
where ✓G is the maximiser.
G⇤

= argmaxG

nX

i=1

Î(Xi, PaXi)

| {z }
ML Score

�
log(N)

2N
|G|

| {z }
BIC

,

where |G| is the number of parameters

Mutual Information: (Information gain)

I(Xi, Xj) =
P

xi,xj
P (xi, xj) log

⇣
P (xi,xj)

P (xi)P (xj)

⌘
.

Properties:
•I(Xa, Xb) � 0.
•I(Xa, Xb) = 0 , Xa ? Xb.
•I(Xa, Xb) = I(Xb, Xa) (Symmetry).
•8B ✓ C : I(XA, XB)  I(XA, XC)
(Monotonicity).
•I(Xa, Xb) = H(Xa)�H(Xa|Xb),
where H(xi) = �

P
xi
P (xi) log

�
P (xi)

�
is

entropy.

Chow-Liu Algorithm:
• For each (Xi, Xj), compute P̂ (Xi, Xj) =
Count(Xi,Xj)

N and Î(Xi, Xj).
• Define complete graph with edges weigh-
ted by Î(Xi, Xj).
• Find maximum spanning tree.
• Pick any variable as the root orient edges
away.

Sampling-based Inference

Forward Sampling:
• Sort variables topologically X1, ..., Xn.
• for i = 1, ..., n:
. • Sample:
xi ⇠ P (Xi|X1 = x1, ..., Xi�1 = xi�1).
P̂ (Xa = xa) =

1
NCount(Xa).

P̂ (Xa = xa|Xb = xb) =
Count(xa,xb)
Count(xb)

.
Absolute Error : (Hoeffdings ineq. C = 1)
Prob(P̂ (x) /2 [P (x)� ", P (x) + "])
 2 exp

�
�2N"2

�

Relative Error :
Prob(P̂ (x) /2 P (x) · (1± "))
 2 exp

�
�NP (x)"2/3

�

Detailed Balance:
8x, x0, Q(x)P (x0|x) = Q(x0)P (x|x0)
Q(x)T (x, x0) = Q(x0)T (x, x0),
where T (x, x0) = P (x0|x)

Gibbs Sampling:
• Start with assignment x to all variables.
• Fix observed variables Xb to xb.
• for t = 1, ...,1:

1



. • Pick i uniformly at random from
{1, ..., n} \ b.
. • Sample xi ⇠ P (Xi|X{1,...,n}\{i}) (up-
date xi).

Designing Markov Chains (MCMC)
(1) Proposal distribution: R(X 0

|X)
(2) Acceptance distribution: . •Xt = x

. • With prob. a = min
n
1, Q(x0)R(x|x0)

Q(x)R(x0|x)

o
,

set Xt+1 = x0

. • With prob. (1� a) set Xt+1 = x
Thm (Metropolis, Hastings): The stationa-
ry distribution is 1

ZQ(x)(= P (x)).

Ergodicity :
Stationary Markov Chain is ergodic if
9t < 1 s.t. every state can be reached
from every state in exactly t steps.

Temporal Models

Markov Assumption:
X1:t�1 ? Xt+1:T |Xt (0 < t < T )

Stationarity Assumption:
8x, x0, P (Xt+1 = x|Xt = x0) does not de-
pend on t.

Stationary distribution:
⇡ does not depend on the initial state.
⇡(x) = limN!1 P (Xt|Y1:t).
(2016P7 HMM):
Solve for ⇡b,⇡f for the stationary distrib.
⇡b =

1
4⇡b +

3
4⇡f

⇡f = 3
4⇡b +

1
4⇡f

Inference Tasks in HMMs:
• Filtering : P (Xt|Y1:t).
• Prediction: P (Xt+k|Y1:t), k 2 N.
• Smoothing : P (Xt|Y1:T ), t < T .
• MPE : argmaxx1:T P (x1:T |Y1:T ).

Bayesian Filtering:
• Start with P (X1).
• At time t:
. • Assume we have P (Xt|y1:t�1).

. • Conditioning :
P (Xt|y1:t) =

P (Xt|y1:t�1)P (yt|Xt)P
x P (x,yt|y1:t) .

. • Prediction:
P (Xt+1|y1:t) =

P
x P (Xt+1|x)P (x|y1:t).

Particle Filtering:
• Suppose P (Xt|y1:t) ⇡

1
N

PN
i=1 �xi,t

(delta-dirac)
• Prediction:
Propagate each particle i:
x0i ⇠ P (Xt+1|xi,t).
• Conditioning :
Weigh particles:
wi =

1
ZP (yt+1|x0i).

Resample N particles:
xi,t+1 ⇠

PN
i=1wi�x0

i
.

Kalman Filters:
P (Xt+1|Xt): (motion model)
Xt+1 = FXt + "t, "t ⇠ N (0,⌃x).
P (Yt|Xt): (sensor model)
Yt = HXt + ⌘t, ⌘t ⇠ N (0,⌃y).

General Kalman Update:
• Transition model:
P (xt+1|xt) = N (t + 1;Fxt,⌃x)
• Sensor model:
P (yt|xt) = N (yt;Hxt,⌃y)
• Kalman update:
µt+1 = Fµt +Kt+1(yt+1 �HFµt).
⌃t+1 = (I�Kt+1)(F⌃tF

> + ⌃x).
• Kalman gain:
Kt+1 = (F⌃tF

> + ⌃x)H
>(H(F⌃tF

> +
⌃x)H

> + ⌃y)�1.

Markov Decision Process

Expected value for policy :
J(⇡) = E[r(X0,⇡(X0)) + �r(X0,⇡(X0)) +
�2r(X0,⇡(X0)) + ...]
Value Function:
V ⇡(x) = J(⇡|X0 = x)
= E

⇥P1
t=0 �

tr(Xt,⇡(Xt))|X0 = x
⇤

Bellman Theorem:
Policy optimal , greedy w.r.t. values fct.

V ⇤(x)
= maxa{r(x, a) + �

P
x0 P (x0|x, a)V ⇤(x0)}

Policy Iteration:
• Start w/ an arbitrary (educated guess) ⇡.
• Until convergence:
. • Compute V ⇡(x), 8x.
. • Compute greedy policy ⇡g w.r.t. V ⇡.
. • ⇡ = ⇡g; [O⇤(n2m/(1� �)]

Value Iteration:
• Initialise V0(x) = maxa{r(x, a)}.
• for t = 1, ...,1:
. • 8x, a, Qt(x, a) := r(x, a) +
�
P

x0 P (x0|x, a)Vt�1(x0).
. • 8x, Vt(x) := maxa{Q(x, a)}.
. • Break if kVt � Vt�1k1  ".
• Choose greedy policy w.r.t. Vt.

Reinforcement Learning

Learning the MDP:
ML approach:
(estimate transitions):
P̂ (Xt+1|Xt, A) =

Count(Xt+1,Xt,A)
Count(Xt,A) .

(estimate rewards):
r̂(x, a) = 1

Nx,a

P
t: Xt=x,At=aRt.

Can be combined w/ "-greedy exploration.

Robbins-Monro (RM) Conditions:
"t

t!1
���! 0,

P1
t=1 "t ! 1,

P1
t=1 "

2 < 1

Rmax Exploration:
• Initialise r(x, a) = Rmax
• Initialise P (x⇤|x, a) = 1, where x⇤ is a
’fairy tale’ state.
Converges to "-optimal policy with pro-
bability 1 � � in time polynomial in
|X|, |A|, T, 1" and log

⇣
1
�

⌘
.

8T time steps w/ high prob., Rmax either
• Obtains near-optimal reward; or
• Visits at least one unknown (x, a).

Q-Learning:
• Initialise Q(x, a) arbitrarily.

• x = x0.
• for t = 1, ...,1:
. • Perform some action a
. • Observe r and x0.
. • Q(x, a) = (1 � ↵t)Q(x, a) +
↵t[r(x, a, x0) + �maxa0{Q(x0, a0)}]
If {↵}t satisfies RM conditions Q-Learning
converges to Q⇤ with probability 1.

Optimistic Q-Learning: (⇡ to Rmax)
Initialise Q(x, a) = Rmax

1��

QTinit
t=1 (1� ↵)�1.

With prob. 1� � obtains "-opt. policy after
time polynomial in |X|, |A|, 1" , log

⇣
1
�

⌘
.

Parametric Q-Learning
Q(x, a; ✓) = ✓>�(x, a),
where � =features of (x, a).
Optimise
L(✓) =

P
(x,a,r,x0)2D

(r + �maxa0{Q(x0, a0; ✓old)�Q(x, a; ✓))2.

Policy Search & Bayes. Opt.

Upper Confidence Sampling:
xt = argmaxx2D{µt�1(x) + �t�t�1(x)

Choosing �t:
For learnt kfkk, we choose
�t = O(�t log

3(t))
Bounds on �t:
�t = O((log(T )d+1) (squared-exponential)
�t = O(d log(T )) (linear kernel)
�t = O(T

d(d+1)
2⌫+d(d+1) log(T )) (Matérn ⌫ > 2)

Safe Bayesian Optimisation:
max✓{f(✓) s.t. g(✓) � 0.
Idea: keep track of the lower bound.
Safe opt. algo.: Solves this problem un-
der conditions on f and g, 9T (", �), s.t.
8" > 0, � > 0, w/ prob. 1� �
(1) No unsafe decision
(2) "-optimal in O(T (", �)).

2


