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Probability & Statistics

Hoeffdings inequality:
P(EF(X) = & 25 f(X0)] > €)
—20e 6:>N>28210g()

< 2exp <
Chain Rule:
P(Xlzn) = P(Xl)P(leXl)
Bayes Rule: 0P
P(X)P(Y|X
(X|Y) > P(X=2)P(Y[X=x)
with Background:

P(X|Y,B) = Z&IBPYIX.B) Igzgl(g)lxm

P(X,|X0n-1)

Multivariate Gaussian
p(x[p, 2) = ((2m)? - [3))~/2

exp(=3(x— 1) B (x — )

exp (7 (2;!;)2)

Conditional Independence:
If PY = hlZ = 2z) > 0, then X L

P(.%’l/,t,o’z) = \/2;7

Y|Z & P(X = z21Z = 2Y = y) =
P(X =z|Z = z).
Properties:

e Contraction: (X L Y|Z)A
=X 1X W|Z.

e Weak union:

X LY W|Z=X LY|W,Z
e Intersection:
(X LY|W,Z)A
=X 1Y, W|Z

(X L WY, 2)

(X L WY, 2)

ICL Cond. Indep. (d-sep):

A path is blocked if it includes a node s.t.
e The arrows on the path meet either head-
to-tail or tail-to-tail at the node, and the
node is in the observed set, or

e The arrows meet head-to-head at the no-
de, and neither the node nor any of its de-
scendants is in the observed set.

Bayesian Linear Regression
Model: Y = X + ¢, € ~ N(0,0?)
Likelihood: P(Y|X, 3,02) = N (XS, 0?)

Prior: P(B|A) = N(0,A™1)
Posterior: P(B|X,y, ) N(ps, X3)
ps = (XTX + 02A) 1 XTy

Y5 =o?(XTX +o2A)7!

(8= 1) "S5 (8 — pp)

=B85 8 28755 s + 155 g
Conditioning a Gaussian:
p(Xalxp) = N(Xa|ua\bv Ea\b)
Halp = Ha + STt (X6 — ), S
= Yga — ECLI)E[;} Eba

Aaa = (Eaa - Z(J,b21;;1217a)717
Aab = _Aaazabzb_bl

alb

Gaussian Process
Distribution over functions.
Prior: P(f).

Likelihood: P(datalf).
Posterior: P(f|data).

Joint distribution of [y, ynt1] is given by
y|X, 02 ~ N(0,XTA"'X + o2I), kerneli-
sed version:

l Y ] |11, X, 02
yn—l—l

C, k
= N 07 kT
C.=K+0L,; c=k(zni1,2n1)+ 0>
k =k(zp+1,X); K=EkX,X)
aj a;|, (m Y11 Y12
= N R
b laz [32 | 112] [221 222]

aj,u] € Re;aQ,UQ € Rd;
Y11 € Re%€ PSD; £19 € Re*/ PSD
Yoo € R/ PSD; 91 € RFX€ PSD

Predictive density:
p(yn+1\xn+1, X y)
Hn+1 = kTC y; o

N(ILLTLJrlv 072L+1>
2 =c—k'C 'k
Bayesian Networks
Variable Elimination: (for MAP, MPE)
Given query P(X|E =€)

e Pick ordering X7, ..., Xj,.
e Initialisation: f; = P(X;|Pax;).
eFori=1,..,n, X;¢{X E}:

e Multiply all factors incl. X;.

®g; ‘= Zml Hj fj (or max,, Hj fi)-

e Renormalise.

Factor Graphs:
Probability measure factorises:
P(X17 ] XTL) = % Hi \I]l(XAz)

Sum-Product Algorithm (for MPE)

e Initialise iz () =1

e Initialise py.(2) = f(x)

e Until convergence, pass messages
e from node to factor:

H s £ (Tm) = H[ene(g:m)\fs Hfp—s (Tm)
e from factor to node:

/“Lfsﬁm(x) = le,.A.,xM fs(x7 L1y eee xM)

) HmEne(fs)\x My — fs ($m)

The marginal is given as the product of all

incoming messages:

p(l’) & HfiewLe(x) :u’flﬁw(x)v

p(Xu = Xu) X fu(xu) HvEne(u) Ho—u (wv)

Parameter Learning;:
ML Approach:
é _ Count(X;,Pax;)
Xi|Pax, — Count(Pax;)
(can use EM for incomplete observations)
Imposing a Prior: (Beta prior here)
A Count(F=cherry)+acherry
N+acher7‘y+alime

9F =cherry —

Structure Learning;:

MLE Score:

Srr(G; D) = maxp{log(P(D6, G))}

log P(D|0g,G) = N S [(Xi, Pax,)+C,
where 0 is the maximiser.

*

= argmaXGZ_f(Xi,PaXi) log( )|G|

i=1

BIC
ML Score

where |G| is the number of parameters

Mutual Information: (Information gain)

P(xix; ’

Properties:

0[(Xa,Xb) Z 0.

OI(Xa,Xb) =0 X, L Xp.

o] (X,, Xp) = I(Xp, Xo) (Symmetry).

VB C C : I(X4,Xp) < I(X4,Xc)
(Monotonicity).
ol (Xa, Xp) = H(Xo) — H(Xo|Xp),

where H(z;) = =), P(mi)log(P(mi)) is
entropy.

Chow-Liu Algorithm:

e For each (X;, X;), compute P(Xi,Xj) =
7Count](vX¢,Xj) and j(Xi, XJ)

e Define complete graph with edges weigh-
ted by I(X;, X;).

e Find maximum spanning tree.

e Pick any variable as the root orient edges
away.

Sampling-based Inference

Forward Sampling;:

e Sort variables topologically X1, ..., X,,.
efori=1,...,n

e Sample:
XTi ~ P(X1|X1 =T, ...,Xi,1 = xi,l).

P(X, = 2q) = £ Count(X,).

> Cou a,
P(Xy = 20| X, = mp) = Sgmtiiain),
Absolute Error: (Hoefldings ineq. C'= 1)
Prob(P(z) ¢ [P(x) — e, P(x) +¢))

< 2exp(—2N52)

Relatwe Error:

Prob(P(z) ¢ P(z)- (1+¢))

< 2exp( NP(z)e 2/3)

Detailed Balance:

Va,o', Q(z)P(2'|x) = Q) P(x]a’)
Q)T (z,2) = Q)T (z,2),
where T'(z,2') = P(2/|x)

Gibbs Sampling;:

e Start with assignment x to all variables.
e Fix observed variables X to xp.
efort=1,..,00



. o Pick ¢ uniformly at random from
{1,...,n}\0.

e Sample z; ~ P(X;| X1 npgiy) (up-
date x;).

Designing Markov Chains (MCMC)
(1) Proposal distribution: R(X'|X)
(2) Acceptance distribution: . eX; =x

e With prob. a = min{l,%},

set Xpp1 =

e With prob. (1 —a) set Xy ==
Thm (Metropolis, Hastings): The stationa-
ry distribution is %Q(az)(: P(x)).

Ergodicity:

Stationary Markov Chain is ergodic if
Jt < oo s.t. every state can be reached
from every state in exactly t steps.

Temporal Models

Markov Assumption:
Xi—1 L Xpmr|Xe (0<t<T)

Stationarity Assumption:
Vo, 2!, P(Xi1 = x| X = 2’) does not de-
pend on t.

Stationary distribution:

7 does not depend on the initial state.
W(ZE) = th—>oo P(thyl:t)-

(2016P7 HMM):

Solve for my, w7 for the stationary distrib.
T = iﬂ'b + %Wf

T = gm+ gy

Inference Tasks in HMMs:

e Filtering: P(X¢|Y1.t).

o Prediction: P(X+x|Y14), k € N.
e Smoothing: P(X|Y1.7), t <T.
e MPE: argmaxy, . P(z1.7|Y1.7).

Bayesian Filtering:
e Start with P(X).
e At time t:
e Assume we have P(Xy|y1:4—1)-

e Conditioning:
P(Xtlyr:e—1)P(ye| X
P(Xitly14) = (ifj?t(xfﬁt\ ﬁtt') 2
e Prediction:
P(Xepalyie) = >, P(Xep1|2) P(z[yr).-

Particle Filtering:

e Suppose P(Xily14) =
(delta-dirac)

o Prediction:

Propagate each particle ::
2!~ P(Xpaari).

o Conditioning:

Weigh particles:

w; = 5 P(yer|2)).
Resample N particles:
i1 ~ DI Wil

1 N
N Zi:l 5xz-,t

Kalman Filters:

P(X¢4+1]X¢): (motion model)

Xt+1 = FXt +E¢, &~ N(O, Ez>
P(Y;|X¢): (sensor model)

Yt :HXt+T]t, Mt NN(O, Ey)

General Kalman Update:

e Transition model:

P(Xt+1|Xt) = N(t + 1; Fxt, Ex)

e Sensor model:

P(y|xi) = N(y;; Hxy, 3y)

e Kalman update:

pe1 = Fug + K1 (v — HF ).
S =1 — K (FSF T +5,).
e Kalman gain:

K, = (FO,FT + 2, H'(HFSFT +
Y )HT +3,)7h

Markov Decision Process

Expected value for policy:

J(m) = Elr(Xo, m(Xo)) + yr(Xo, 7(X0)) +
72r(Xo, 7(Xo)) + ...]

Value Function:

V™(z) = J(7| Xo = z)

= B [3720 7' (X, m(Xy))| Xo = 7]

Bellman Theorem:
Policy optimal < greedy w.r.t. values fct.

V*(z)
=max.{r(z,a) + 7>, P(2'|z,a)V*(z")}

Policy Iteration:
e Start w/ an arbitrary (educated guess) .
e Until convergence:

e Compute V™ (z), Vz.

e Compute greedy policy mg w.r.t. V7.
[0*(n*m/(1 = )]

Value Iteration:
e Initialise Vp(z) = max{r(z,a)}.
efort=1,..., 00:
e Vz,aq, Qi(xz,a) =
VS, P2, a) Vi (@),
o Vz, Vi(z) := max,{Q(z,a)}.
e Break if [|V; — Vi—1|loo < e.
e Choose greedy policy w.r.t. V;.

o T = Ty;

r(z,a) +

Reinforcement Learning

Learning the MDP:

ML approach:

(estimate transitions):

5 Count(Xis1,Xz,A
P(XtJrl‘Xt»A) = m(?;éntt(}lt,At) )
(estimate rewards):

h 1

F(z,a) = Nowa PO Xi=xz,Ar=a Ry.

Can be combined w/ e-greedy exploration.

Robbins-Monro (RM) Conditions:

t—o00 o) s 2
e ——0, D26 =00, Yo 7 <00

Rmax Exploration:

o Initialise 7(z,a) = Rmax

e Initialise P(z*|z,a) = 1, where z* is a
fairy tale’ state.

Converges to e-optimal policy with pro-
bability 1 — § in time polynomial in
X[, |A], T, L and 10g<%).

VT time steps w/ high prob., Rpax either
e ODbtains near-optimal reward; or

e Visits at least one unknown (z,a).

Q-Learning:
e Initialise Q(z,a) arbitrarily.

o = 1.
efort=1,... cc:

e Perform some action a

e Observe r and z'.
.0 Q(rya) = (1 — a)Q(z,a) +
Qg [7"(33, a, xl) + maxa/{Q(:B', al>}]
If {a}, satisfies RM conditions Q-Learning
converges to Q* with probability 1.

Optimistic Q-Learning: (~ to Ruyax)
Initialise Q(z,a) = %‘if tT;‘it(l —a) L
With prob. 1—§ obtains e-opt. policy after

1
’ e

time polynomial in | X|, |A| log(%).

Parametric Q-Learning

Q(z,a;0) = 0" p(z,a),

where ¢ =features of (z,a).

Optimise

L(e) = Z(az,a,r,az’)ED

(r + v maxg {Q(', 3 09%) — Q(z, a;0))>

Policy Search & Bayes. Opt.

Upper Confidence Sampling:
vy = argmaxgepipe—1() + Brog—1(z)

Choosing f;:

For learnt || f||x, we choose

B = O(y: log™(t))

Bounds on ~:

v = O((log(T)**) (squared-exponential)
vt = O(dlog(T)) (linear kernel)

d(d+1)
v = O(T2v+d@+1) log(T)) (Matérn v > 2)

Safe Bayesian Optimisation:
maxg{f(0) s.t. g(f) > 0.

Idea: keep track of the lower bound.

Safe opt. algo.: Solves this problem un-
der conditions on f and g, 3T(g,d), s.t.
Ve > 0,6 >0, w/ prob. 1 —§

(1) No unsafe decision

(2) e-optimal in O(T'(g,0)).



