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1 Differential und Differentiationsregeln (Erinnerung)

Sei in diesem Kapitel immer Q C R offen, f : Q@ — R, zy € €2, sofern nicht anders
definiert.

Definition 1.1: (Struwe 5.1.1)

(i) f heisst differenzierbar an der Stelle zg, falls der Grenzwert

=60 piy - U

lim
T—x0, TETQ T — X

existiert. In diesem Fall heisst f'(zo) die Ableitung (das Differential) von f an
der Stelle xg.

(i1) Analog heisst f = (f1, ..., fn) : © — R™ an der Stelle x, differenzierbar, falls jede

der Komponentenfunktionen f; an der Stelle xy differenzierbar ist undf’(zq) =

(f{(l’o), aS) f;L($O))

Definition 1.2: (Struwe 5.1.2)

f:Q — R™ heisst auf Q differenzierbar, falls f an jeder Stelle zy € ) differenzierbar
ist.

Satz 1: (Struwe 5.1.1)

Ist f: Q — R differenzierbar an der Stelle xq € €2, so ist f an der Stelle zy, auch
stetig.

Satz 2: (Struwe 5.1.2)

Seien f,g : 2 — R an der Stelle xq € () differenzierbar. Dann sind die Funktionen
f+g, f-gund, falls g(zo) # 0, nach die Funktion f/g an der Stelle z( differenzierbar
und es gilt

(i) Linearitét:
(f +9)(xo) = f'(z0) + ¢'(20)

(ii) Produkteregel:
(f9)'(zo) = f'(x0)g(20) + f(x0)g'(x0)

(iii) Quotientenregel:

f'(z0)g(wo) — f(x0)g' (o)
92(z0) .

(f/9) (z0) =




Satz 3: (Kettenregel; Struwe 5.1.3)

Sei f:Q — R an der Stelle zy € 2 differenzierbar und sei g : R — R an der Stelle
yo = f(xo) differenzierbar. Dann ist die Funktion fo g : 2 — R an der Stelle zg
differenzierbar und es gilt

(go f)/(l”o) = gl(f(%))f’(iﬁo)-

Beispiel 1.1. Berechne die Ableitung von | sin(z)[*%®).

Losung:
Wir schreiben den Ausdruck um:

|Sin(x)|°°s(x) _ elog(|sin(w)|cos(gc))

_ ecos(x) log | sin(z)|

Verwende nun die Ketten- und Produkteregel:

d d .
el cos(z) _ = cos(z)log|sin(z)|
dx| sin(x)] 7€
: d
= ¢o03(z) log|sin(z)| . (cos(z) log | sin(z)|)
: d
— ¢oos(@) log |sin(2)] <— sin(z) log |sin(x)| + cos(x) - . log | sin(x)|>
x
Betrachten wir die Ableitung vom Logarithmus ein bisschen genauer:
L gy = { BB =5l S@ = @) >0
i L log(—f(@)) = = - (—f/()) = 42, f(a) <0
d f'(z)
—1 = .
= g lsle) =%
Also ist das folgende unsere Losung:
d .
%| sin(z)[c05(®) = geos(@)logsin(@)] (— sin(x) log |sin(x)| + cos(z) - Z?r?((i)))

= |sin(a)|«) (— sin(x) log |sin(z)| + Cs?l(;;)) |

Satz 4: (Konigsberger Differenzierbarkeitssatz S.165)

Es sei f : Q — C stetig und fast tiberall differenzierbar. Die (fast iiberall in )
existierende) Ableitung f’ besitze in einem Punkt xy €  eine stetige Ergénzung
(Fortsetzung). Dann ist f in z( differenzierbar, und es gilt f'(z,) = lim,_,, f'(z).

Bemerkung.

arctan’(z) = :
Bemerkung.

Um die Monotonie zu zeigen, kann man wie folgt vorgehen: Ersetzte n durch die kon-
tinuierliche Variable x und berechne die Ableitung nach z. Gilt a’(z) > 0 respektive
a'(x) <0, so ist die Folge monoton wachsend respektive monoton fallend.
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2 Extrema

Sei in diesem Kapitel immer €2 C R offen, f : 2 — R, sofern nicht anders definiert.

Definition 2.1: (Struwe 5.4.2)

(i) f heisst auf Q m-mal differenzierbar, falls f (m — 1)-mal differenzierbar ist mit
differenzierbarer (m — 1)-ter Ableitung f(m=1.
In diesem Fall heisst

4y any

: Q
dx dx™ ol

f(m)

die m-te Ableitung von f.

(ii) f ist von der Klasse C™(f2), falls f m-mal differenzierbar ist und falls die Funk-
tionen f = fO, f/ = fMO . f0" stetig sind.

Korollar 2.1: (Struwe 5.5.1)

Ein xy € Q heisst (strikte) lokale Minimalstelle von f, falls in einer Umgebung U von
xo gilt
f(x) > f(xg), Ve e U (bzw. f(x) > f(xo), Yz € U\ {zo})-

Korollar 2.2: (Struwe 5.5.1)
Sei f € C™(Q), zo € Q mit f/(xg) = ... = f™ V(z4) = 0.
(i) Falls m = 2k + 1, x lokale Minimalstelle, so folgt f™ (z) = 0.
(ii) Falls m = 2k und falls f(™(z4) > 0, so ist xq strikte lokale Minimalstelle.

Satz 5: (Struwe 5.5.4)

Jedes Polynom p : C — C vom Grad > 1 hat (mindestens) eine Nullstelle.

3 Konvexe Funktionen und Jensen

Definition 3.1

Eine Funktion f: ) C R — R heisst konvex, wenn

fAzr + (1= Nag) < Af(z1) + (1= N) f(xz)

fur alle x1,x9 € Q und alle X € [0, 1] gilt.
f heisst konkav, wenn — f konvex ist, d.h. wenn

FOzy 4+ (1= N)za) > Af(21) + (1 = A) f(22)



fir alle x1,x9 € Q und alle X € [0, 1] gilt.

Bemerkung.
Die Funktion f heisst konvez (konkav), falls ihr Graph auf jedem Teilinterval unterhalb

der jeweiligen Sekante liegt, d.h. falls fiir alle Punkte o < x < x; im Interval [z, x1]

gilt
f(z) < flzo) + M(w — ) .
N T1 — o ,
Sek;;nte
ry 4
y FOr + (1= Aaa) |
/ Af(z1) + (1 = A) faz)
Py
N\
L Af(n) + (1 A)f(w2)
531 T2 ;
konkav konvex
Satz 6

Sei f € C*(Q). Dann ist f genau dann konvex (konkav), wenn f”(z) >0 (< 0) fir
alle z € 2 gilt.

Satz 7: (Jensen; Struwe Satz 5.5.3)

Sei f : (a,b) — R konvex. Dann gilt fiir beliebige Punkte xy,...,zx € (a,b) und
N

Zahlen 0 < ty,....,txy <1 mit Y t; = 1 die Ungleichung:
i=1

Beispiel 3.1 (Struwe Beispiel 5.5.4). [Vergleich von arithmetischem und geometrischem
Mittel]

n
Fir alle 0 < 1, ...z, <00, 0<aq,...,q, <1 mit > a; =1 gilt:
i=1

n

n
o
| |xi’ < g oG T;
i=1

1=0



Beweis:

Die Aussage folgt mit Satz 5.5.3 (Jensen).

Mit exp” = exp > 0 2%l gt die Funktion exp konvex. Diese Eigenschaft werden wir

im folgenden nutzen:

H )t = H exp(a; log(z;))

=0 =0

= exp (i % 10%(%‘))

=0
n
Satz 5.5.3 Jensen

< Z a; exp(log(z;))

=0

Bemerkung.
Fir o; = %, 1 <4 < n gilt mit Jensen das folgende:




