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1 Differential und Differentiationsregeln (Erinnerung)

Sei in diesem Kapitel immer Ω ⊂ R offen, f : Ω → R, x0 ∈ Ω, sofern nicht anders
definiert.

Definition 1.1: (Struwe 5.1.1)

(i) f heisst differenzierbar an der Stelle x0, falls der Grenzwert

lim
x→x0, x 6=x0

f(x)− f(x0)

x− x0
=: f ′(x0) =:

df

dx
(x0)

existiert. In diesem Fall heisst f ′(x0) die Ableitung (das Differential) von f an
der Stelle x0.

(ii) Analog heisst f = (f1, ..., fn) : Ω→ Rn an der Stelle x0 differenzierbar, falls jede
der Komponentenfunktionen fi an der Stelle x0 differenzierbar ist undf ′(x0) =
(f ′1(x0), ..., f

′
n(x0)).

Definition 1.2: (Struwe 5.1.2)

f : Ω→ Rn heisst auf Ω differenzierbar, falls f an jeder Stelle x0 ∈ Ω differenzierbar
ist.

Satz 1: (Struwe 5.1.1)

Ist f : Ω → R differenzierbar an der Stelle x0 ∈ Ω, so ist f an der Stelle x0 auch
stetig.

Satz 2: (Struwe 5.1.2)

Seien f, g : Ω → R an der Stelle x0 ∈ Ω differenzierbar. Dann sind die Funktionen
f + g, f · g und, falls g(x0) 6= 0, nach die Funktion f/g an der Stelle x0 differenzierbar
und es gilt

(i) Linearität:
(f + g)′(x0) = f ′(x0) + g′(x0)

(ii) Produkteregel:
(fg)′(x0) = f ′(x0)g(x0) + f(x0)g

′(x0)

(iii) Quotientenregel:

(f/g)′(x0) =
f ′(x0)g(x0)− f(x0)g

′(x0)

g2(x0)
.
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Satz 3: (Kettenregel; Struwe 5.1.3)

Sei f : Ω → R an der Stelle x0 ∈ Ω differenzierbar und sei g : R → R an der Stelle
y0 = f(x0) differenzierbar. Dann ist die Funktion f ◦ g : Ω → R an der Stelle x0
differenzierbar und es gilt

(g ◦ f)′(x0) = g′(f(x0))f
′(x0).

Beispiel 1.1. Berechne die Ableitung von | sin(x)|cos(x).

Lösung :
Wir schreiben den Ausdruck um:

| sin(x)|cos(x) = elog(| sin(x)|
cos(x))

= ecos(x) log | sin(x)|

Verwende nun die Ketten- und Produkteregel:

d

dx
| sin(x)|cos(x) =

d

dx
ecos(x) log | sin(x)|

= ecos(x) log | sin(x)|
d

dx
(cos(x) log | sin(x)|)

= ecos(x) log | sin(x)|
(
− sin(x) log |sin(x)|+ cos(x) · d

dx
log | sin(x)|

)
Betrachten wir die Ableitung vom Logarithmus ein bisschen genauer:

d

dx
log(f(x)) =

{
d
dx

log(f(x)) = 1
f(x)
· f ′(x) = f ′(x)

f(x)
, f(x) > 0

d
dx

log(−f(x)) = 1
−f(x) · (−f

′(x)) = f ′(x)
f(x)

, f(x) < 0

⇐⇒ d

dx
log(f(x)) =

f ′(x)

f(x)
.

Also ist das folgende unsere Lösung:

d

dx
| sin(x)|cos(x) = ecos(x) log | sin(x)|

(
− sin(x) log |sin(x)|+ cos(x) · cos(x)

sin(x)

)
= | sin(x)|cos(x)

(
− sin(x) log |sin(x)|+ cos2(x)

sin(x)

)
.

Satz 4: (Königsberger Differenzierbarkeitssatz S.165)

Es sei f : Ω → C stetig und fast überall differenzierbar. Die (fast überall in Ω
existierende) Ableitung f ′ besitze in einem Punkt x0 ∈ Ω eine stetige Ergänzung
(Fortsetzung). Dann ist f in x0 differenzierbar, und es gilt f ′(xo) = limx→x0 f

′(x).

Bemerkung.

arctan′(x) =
1

x2 + 1
.

Bemerkung.
Um die Monotonie zu zeigen, kann man wie folgt vorgehen: Ersetzte n durch die kon-
tinuierliche Variable x und berechne die Ableitung nach x. Gilt a′(x) ≥ 0 respektive
a′(x) ≤ 0, so ist die Folge monoton wachsend respektive monoton fallend.
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2 Extrema

Sei in diesem Kapitel immer Ω ⊂ R offen, f : Ω→ R, sofern nicht anders definiert.

Definition 2.1: (Struwe 5.4.2)

(i) f heisst auf Ω m-mal differenzierbar, falls f (m− 1)-mal differenzierbar ist mit
differenzierbarer (m− 1)-ter Ableitung f (m−1).
In diesem Fall heisst

f (m) =
df (m−1)

dx
=

dmf

dxm
: Ω→ R

die m-te Ableitung von f .

(ii) f ist von der Klasse Cm(Ω), falls f m-mal differenzierbar ist und falls die Funk-
tionen f = f (0), f ′ = f (1), ..., f (m) stetig sind.

Korollar 2.1: (Struwe 5.5.1)

Ein x0 ∈ Ω heisst (strikte) lokale Minimalstelle von f , falls in einer Umgebung U von
x0 gilt

f(x) ≥ f(x0), ∀x ∈ U (bzw. f(x) > f(x0), ∀x ∈ U \ {x0}).

Korollar 2.2: (Struwe 5.5.1)

Sei f ∈ Cm(Ω), x0 ∈ Ω mit f ′(x0) = ... = f (m−1)(x0) = 0.

(i) Falls m = 2k + 1, x0 lokale Minimalstelle, so folgt f (m)(x0) = 0.

(ii) Falls m = 2k und falls f (m)(x0) > 0, so ist x0 strikte lokale Minimalstelle.

Satz 5: (Struwe 5.5.4)

Jedes Polynom p : C→ C vom Grad ≥ 1 hat (mindestens) eine Nullstelle.

3 Konvexe Funktionen und Jensen
Definition 3.1

Eine Funktion f : Ω ⊂ R→ R heisst konvex, wenn

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

für alle x1, x2 ∈ Ω und alle λ ∈ [0, 1] gilt.
f heisst konkav, wenn −f konvex ist, d.h. wenn

f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2)
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für alle x1, x2 ∈ Ω und alle λ ∈ [0, 1] gilt.

Bemerkung.
Die Funktion f heisst konvex (konkav), falls ihr Graph auf jedem Teilinterval unterhalb
der jeweiligen Sekante liegt, d.h. falls für alle Punkte x0 < x < x1 im Interval [x0, x1]
gilt

f(x) ≤ f(x0) +
f(x1)f(x0)

x1 − x0
(x− x0)︸ ︷︷ ︸

Sekannte

.

Satz 6

Sei f ∈ C2(Ω). Dann ist f genau dann konvex (konkav), wenn f ′′(x) ≥ 0 (≤ 0) für
alle x ∈ Ω gilt.

Satz 7: (Jensen; Struwe Satz 5.5.3)

Sei f : (a, b) → R konvex. Dann gilt für beliebige Punkte x1, ..., xN ∈ (a, b) und

Zahlen 0 ≤ t1, ..., tN ≤ 1 mit
N∑
i=1

ti = 1 die Ungleichung:

f

(
N∑
i=1

tixi

)
≤

N∑
i=1

tif(xi).

Beispiel 3.1 (Struwe Beispiel 5.5.4). [Vergleich von arithmetischem und geometrischem
Mittel]

Für alle 0 < x1, ..., xn <∞, 0 ≤ α1, ..., αn ≤ 1 mit
n∑
i=1

αi = 1 gilt:

n∏
i=0

xαi
i ≤

n∑
i=1

αixi
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Beweis :
Die Aussage folgt mit Satz 5.5.3 (Jensen).

Mit exp′′ = exp > 0
Satz 1.
=⇒ ist die Funktion exp konvex. Diese Eigenschaft werden wir

im folgenden nutzen:

n∏
i=0

xαi
i =

n∏
i=0

exp(αi log(xi))

= exp

(
n∑
i=0

αi log(xi)

)
Satz 5.5.3 Jensen

≤
n∑
i=0

αi exp(log(xi))

=
n∑
i=0

αix

�

Bemerkung.
Für αi = 1

n
, 1 ≤ i ≤ n gilt mit Jensen das folgende:

n

√√√√ n∏
i=1

xi ≤
1

n

n∑
i=1

xi.
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