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1 Stetigkeit (Erinnerung)

Definition 1.1: (Struwe 4.2.2)

K ⊂ Rn heisst kompakt, falls jede Folge (xn)n∈N ⊂ K einen Häufungspunkt in K
besitzt, d.h. falls eine Teilfolge Λ ⊂ N und ein x0 ∈ K existieren mit

xn
n→∞, n∈Λ−−−−−−→ x0.

Bemerkung.
Eine Menge K ⊂ Rn heisst kompakt, falls sie beschränkt und abgeschlossen ist.

Beispiel 1.1 (Struwe 4.2.2).

(i) Das ”abgeschlossene” Intervall [0, 1] ist kompakt.

(ii) Das ”offene” Intervall (0, 1) ist nicht kompakt.

Die Beweise sind im Struwe Skript.

1.1 Stetigkeit

Definition 1.2: (Struwe 4.1.3)

Sei Ω ⊂ Rd, f : Ω→ Rn.

(i) f heisst stetig an der Stelle x0 ∈ Ω, falls lim
x→x0

f(x) = f(x0) =: a existiert.

(ii) f heisst an der Stelle x0 ∈ Ω \ Ω stetig ergänzbar, falls lim
x→x0

f(x) =: a existert.

(In diesem Fall ist die duch f(x0) = a ergänzte Funktion f stegig an der Stelle
x0.)

Definition 1.3: (Struwe 4.2.1)

Sei f : Ω ⊂ Rd → Rn.
f heisst stetig auf Ω, falls f in jedem Punkt x0 ∈ Ω stetig ist.

Definition 1.4: (Burger 3.2.1)

Sei D ⊂ R, x0 ∈ D. Die Funktion f : D → R ist in x0 stetig, falls es für jedes ε > 0
ein δ > 0 gibt, so dass für alle x ∈ D die Implikation

|x− x0| < δ =⇒ |f(x)− f(x0)| < ε

gilt.

Definition 1.5: (Burger 3.2.1 (Quantorenversion von oben))

Sei D ⊂ R, x0 ∈ D. Die Funktion f : D → R ist in x0 stetig, falls

∀ε > 0,∃δ > 0 : |x− x0| < δ =⇒ |f(x)− f(x0)| < ε, ∀x ∈ D
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gilt.

1.2 Gleichmässige Stetigkeit

Definition 1.6: (Struwe 4.7.2)

f : Ω→ Rn heisst gleichmässig stetig, falls gilt

∀ε > 0, ∃δ(ε) = δ > 0, ∀x, y ∈ Ω : |x− y| < δ ⇒ |f(x)− f(y)| < ε

Satz 1: (Struwe 4.7.3)

Sei Ω ⊂ Rd beschränkt, f : Ω → Rn stetig und auf Ω stetig ergänzbar. Dann ist f
gleichmässig stetig.

Satz 2

Sei f : Ω→ R stetig und Ω kompakt. Dann ist f gleichmässig stetig.

Bemerkung.
Diesen Satz kann man sich mit der folgenden Merkregel merken:

Stetigkeit auf einer kompakten Menge ⇒ gleichmässige Stetigkeit.

Beispiel 1.2. Ist die Funktion f(x) = x2

x+1
gleichmässig stetig?

Lösung :
Wir fixieren ein ε > 0. Wir suche δ > 0, sodass für alle x, y ∈ Ω mit |x− y| < δ folgendes
gilt:

|f(x)− f(y)| < ε.

Für x, y ∈ [0,∞) gilt:∣∣∣∣ x2

x+ 1
− y2

y + 1

∣∣∣∣ =

∣∣∣∣x2(y + 1)− y2(x+ 1)

(x+ 1)(y + 1)

∣∣∣∣
=

∣∣∣∣x2y + x2 − y2x− y2

(x+ 1)(y + 1)

∣∣∣∣
=

∣∣∣∣xy(x− y) + x2 − y2

(x+ 1)(y + 1)

∣∣∣∣
=

∣∣∣∣xy(x− y) + (x− y)(x+ y)

(x+ 1)(y + 1)

∣∣∣∣
= |x− y|

(
xy + x+ y

(x+ 1)(y + 1)

)
= |x− y|

(
xy

(x+ 1)(y + 1)
+

x

(x+ 1)(y + 1)
+

y

(x+ 1)(y + 1)

)
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Weil 1
x+1
≤ 1 und y

y+1
≤ 1, gilt xy

(x+1)(y+1)
≤ 1. Deshalb können wir die folgende Ab-

schätzung machen:

∣∣∣∣ x2

x+ 1
− y2

y + 1

∣∣∣∣ = |x− y|

 xy

(x+ 1)(y + 1)︸ ︷︷ ︸
≤1

+
x

(x+ 1)(y + 1)︸ ︷︷ ︸
≤1

+
y

(x+ 1)(y + 1)︸ ︷︷ ︸
≤1


≤ |x− y|(1 + 1 + 1)

= 3|x− y|

Somit folgt: ∣∣∣∣ x2

x+ 1
− y2

y + 1

∣∣∣∣ ≤ 3|x− y|
!
< ε ⇒ |x− y| < ε

3
=: δ.

Da δ von x, y unabhängig ist, folgt damit, dass f gleichmässig stetig ist.

1.3 Lipschitz-Stetigkeit

Definition 1.7: (Struwe 4.1.4)

Eine Funktion f : Ω ⊂ Rd → Rn heisst Lipschitz stetig mit Lipschitzkonstante L, falls
gilt

‖f(x)− f(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ Ω.

Satz 3

Eine differenzierbare Funktion f : Ω → R ist genau dann Lipschitz-stetig, wenn ihre
erste Ableitung auf Ω beschränkt ist.

Bemerkung.
Die verschiedenen Stetigkeiten hängen wie folgt von einander ab, wobei die Pfeile Imp-
likationen darstellen:

Beispiel 1.3. Ist die folgende Funktion Lipschit-stetig? Falls ja, bestimme die Lipschitz-
Konstante.

f : (−3, 2)→ R

x 7→ f(x) = x2 + 4x− 1.
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Lösung :
Seien x, y ∈ (−3, 2) beliebig. Es gilt

|f(x)− f(y)| = |x2 + 4x− 1− (y2 + 4y − 1)|
= |x2 + 4x− 1− y2 − 4y + 1|
= |x2 + 4x− y2 − 4y|
= |x2 − y2 + 4(x− y)|
= |(x− y)(x+ y) + 4(x− y)|
= |x+ y + 4||x− y|

Für alle x, y ∈ (−3, 2) gilt nach der Dreiecksungleichung |x + y + 4| ≤ |x| + |y| + 4 ≤
3 + 3 + 4 = 10. Es ergitbt sich somit:

|f(x)− f(y)| = |x+ y + 4||x− y| ≤ 10|x− y|.

Die Funktion ist demzufolge Lipschitz-stetig mit Lipschitz-Konstante L = 10.

2 Integration (I)

Definition 2.1: (Struwe 6.1.1)

Eine Funktion F ⊂ C1([a, b]) hiesst Stammfunktion zu f falls gilt:

F ′(x) = f(x) ∀x ∈ [a, b].

Definition 2.2

(i) Eine Partition (Zerlegung) vom kompakten Interval I = [a, b] mit a < b ist eine
endliche Teilmenge P ⊂ I mit P = {a = x0, x1, ..., xn = b} mit x0 < ... < xn.
Die Menge aller Partitionen von I bezeichnen wir mit

P(I) := {P ⊂ I | a, b ∈ P, P ist endlich}.

(ii) Die Feinheit der Zerlegung ist definiert durch

δ(P ) := max
1≤i≤n

{|xi − xi−1|} mit n(P ) := n = |P | − 1.

Bemerkung : δ(P ) ist die Länge des grössten Intervals Ii = [xi−1, xi] mit 1 ≤ i ≤
n.

(iii) Seien ξi ∈ Ii Zwischenpunkte (Stützstellen) mit xi−1 ≤ ξi ≤ xi. Jede Summe
der Form

S(f, P, ξ) :=
n∑
i=1

f(ξi)(xi − xi−1)

heisst Riemannsche Summe der Zerlegung P und ξ ∈ {ξ1, ..., ξn}.
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Satz 4: (Struwe 6.2.1)

f monoton ⇒ f ist integrierbar.

Satz 5: (Struwe 6.2.2)

f stetig ⇒ f ist integrierbar.

Definition 2.3: (Obersumme)

S(f, P ) :=
n∑
i=1

sup
ξ∈[xi−1,xi]

f(ξi)(xi − xi−1)

Definition 2.4: (Untersumme)

S(f, P ) :=
n∑
i=1

inf
ξ∈[xi−1,xi]

f(ξi)(xi − xi−1)

Definition 2.5: (Oberes Riemann-Integral)∫ b

a

f(x)dx := inf{S(f, P ) | P ∈ P(I)}.

Definition 2.6: (Unteres Riemann-Integral)∫ b

a

f(x)dx := sup{S(f, P ) | P ∈ P(I)}.

Korollar 2.1: (Struwe 6.2.3)

Sei f : [a, b]→ R eine beschränkte und integrierbare Funktion. Sei {P (n)} eine Folge
von Partitionen des kompakten Intervals [a, b] mit δ(P (n))

n→∞−−−→ 0 und {ξ(n)} eine
feste Wahl von Zwischenpunkten zur Partition P (n). Dann ist∫ b

a

f(x)dx = lim
n→∞

S(f, P (n), ξ(n)).

Bemerkung.
Falls Korollar 6.2.3 erfüllt ist, wird f als Riemann-integrierbar auf [a, b] bezeichnet.

Bemerkung.
Uniforme Partitionen P (n) = {a = x0, x1, ..., xn} mit xi = a + i(b−a)

n
und xi − xi−1 = b−a

n

ist eine Folge von Partitionen mit δ(P (n)) = b−a
n

n→∞−−−→ 0.
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Beispiel 2.1. Berechne das Integral
1∫
0

(x3 − 2x)dx explizit mit Hilfe von Riemannschen

Summen.

Lösung :
Wir unterteilen das Integrationsinterval [0, 1] in n gleich grosse Teilintervalle der Länge
∆x = 1

n
mit xk = k

n
, k = 1, ..., n. Die Feinheit dieser Zerlegung ist δ(P ) = 1

n
. Es gilt

lim
n→∞

δ(P ) = 0. Damit ist die Funktion f(x) = x3 − 2x Riemann-integrierbar und gemäss

der Definition des Riemann-Integrals (wir wählen ξk = xk) gilt:∫ 1

0

f(x)dx =

∫ 1

0

(x3 − 2x)dx = lim
n→∞

n∑
k=1

f(ξk)(xk − xk−1)

= lim
n→∞

n∑
k=1

f

(
k

n

)
1

n

= lim
n→∞

1

n

n∑
k=1

f

(
k

n

)

= lim
n→∞

1

n

n∑
k=1

((
k

n

)3

− 2 · k
n

)

= lim
n→∞

1

n

n∑
k=1

(
k3

n3
− 2 · k

n

)
(∗)
= lim

n→∞

1

n4

n∑
k=1

k3 − 2

n2

n∑
k=1

k

= lim
n→∞

1

n4

(
n(n+ 1)

2

)2

− 2

n2

n(n+ 1)

2

= lim
n→∞

n2(n+ 1)2

4n4
− n(n+ 1)

n2

= lim
n→∞

(n+ 1)2

4n2
− n(n+ 1)

n2

= lim
n→∞

n2 + 2n+ 1

4n2
− n2 + n

n2

=
1

4
− 1

= −3

4
.

(∗): Wir haben die folgenden Formeln benuntzt:

n∑
k=1

k3 =

(
n(n+ 1)

2

)2 n∑
k=1

k =
n(n+ 1)

2

Bemerkung.
Die Kettenregel lautet:

(f ◦ g)′(x) = f ′(g(x))g′(x).

Damit ist (f ◦ g)(x) = f(g(x)) eine Stammfunktion von f ′(g(x))g′(x).

7



Beispiel 2.2. Bestimme die Stammfunktion von
∫ arctan5(x)

1+x2
dx.

Lösung : ∫
arctan5(x)

1 + x2
dx =

∫
arctan5(x)︸ ︷︷ ︸

f(g(x))

· 1

1 + x2︸ ︷︷ ︸
g′(x)

dx

=
1

6
arctan6(x) + C, ∀C ∈ R.

Beispiel 2.3. Bestimme die Stammfunktion von
∫

3
√
x+1

√
x+1

dx.

Lösung : ∫
3
√
x+1

√
x+ 1

dx =

∫
elog(3)

√
x+1

√
x+ 1

= 2

∫
elog(3)

√
x+1

2
√
x+ 1

dx

= 2

∫
elog(3)

√
x+1︸ ︷︷ ︸

f(g(x))

· 1

2
√
x+ 1︸ ︷︷ ︸
g(x)

dx

=
2

log(3)
· elog(3)

√
x+1 + C, ∀C ∈ R

=
2

log(3)
· 3
√
x+1 + C, ∀C ∈ R.

Satz 6: Hauptsatz der Differential und Integralrechung (Version A)

Sei f ∈ C0([a, b]). Setze F (x) =
x∫
a

f(t)dt, x ∈ [a, b].

Dann gilt F ∈ C1((a, b)) mit F ′(x) = f(x).

Satz 7: Hauptsatz der Differential und Integralrechung (Version B)

Sei f ∈ C0([a, b]), F eine Stammfunktion zu f .
Dann gilt: ∫ b

a

f(x)dx = F (b)− F (a).

Beispiel 2.4. Sei A(x) :=
cos(x)∫
−1

earccos(t)dt. Berechen A′(x).
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Lösung :

F (x) :=

∫ x

−1

earccos(t)dt

Φ(x) := cos(x)

⇒ A(x) = (F ◦ Φ)(x)

⇒ A′(x) = F ′(Φ(x)) · Φ′(x)

= earccos(cos(x)) · (− sin(x))

= − sin(x) · ex

3 Integration (II)

Satz 8: (Monotonie des R-Integrals; Struwe 6.3.1)

Seien f, g : [a, b]→ R, R-integrierbar mit f ≤ g. Dann gilt:∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx.

Satz 9: (Linearität des R-Integrals; Struwe 6.3.2)

Seien α, β ∈ R, I = [a, b] und f, g : I → R zwei R-integriebare Funktionen. Dann ist
die Funktion αf(x) + βg(x) über [a, b] integrierbar und es gilt:∫ b

a

αf(x) + βg(x)dx = α

∫ b

a

f(x)dx+ β

∫ b

a

g(x)dx.

Korollar 3.1: (Standardabschätzung; Struwe 6.3.1)

Sei f integrierbar über [a, b]. Dann ist |f | R-integrierbar und es gilt:∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣ ≤ ∫ b

a

|f(x)|dx ≤

(
sup
x∈[a,b]

|f(x)|

)
(b− a).

Satz 10: (Gebietsadditivität; Struwe 6.3.3)

Sei f : [a, b] → R über [a, b] integrierbar. Sei c ∈ [a, b]. Dann sind f
∣∣∣
[a,c]

und f
∣∣∣
[c,b]

integrierbar und gilt: ∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

Bemerkung.
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• Konvention: ∫ b

a

f(x)dx = −
∫ a

b

f(x)dx

• ∫ a

a

f(x)dx = 0

Satz 11: (Partielle Integration)∫ b

a

f ′(x) · g(x)dx =
[
f(x)g(x)

]b
a
−
∫ b

a

f(x) · g′(x)dx.

Herleitung :

uv =

∫
(uv)′dx

Produkteregel
=

∫
(u′v + uv′)dx

Linearität
=

∫
u′vdx+

∫
uv′dx

⇔
∫
u′vdx = uv −

∫
u′vdx

Beispiel 3.1. Berechne
∫

log2(x)dx.

Lösung : ∫
log2(x)dx =

∫
log2(x) · 1 dx

PI
= log2(x) · x−

∫
2 log(x) · 1

x
· x dx

= log2(x) · x− 2

∫
log(x) dx

= log2(x) · x− 2

(∫
log(x) · 1 dx

)
PI
= log2(x) · x− 2

(
log(x) · x−

∫
1

x
· x dx

)
= log2(x) · x− 2 (log(x) · x− x) + C, C ∈ R
= x log2(x)− 2x log(x) + 2x+ C, C ∈ R

Beispiel 3.2. Berechne
∫
e2x cos(x) dx.

Lösung :
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∫
e2x cos(x) dx

PI
= e2x sin(x)− 2

∫
e2x sin(x) dx

PI
= e2x sin(x)− 2

(
e2x(− cos(x))− 2

∫
e2x(− cos(x)) dx

)
= e2x sin(x)− 2

(
e2x(− cos(x)) + 2

∫
e2x cos(x) dx

)
= e2x sin(x) + 2e2x cos(x) + 4

∫
e2x cos(x) dx

⇔ 5

∫
e2x cos(x) dx = e2x sin(x) + 2e2x cos(x) + C̃, C̃ ∈ R

⇔
∫
e2x cos(x) dx =

1

5
e2x sin(x) +

2

5
e2x cos(x) + C, C ∈ R

Beispiel 3.3. Berechne
1∫
0

x sinh(4x) dx.

Lösung :

∫ 1

0

x sinh(4x) dx =

[
x · cosh(4x)

4

]1

0

−
∫ 1

0

1 · cosh(4x)

4
dx

=

[
x · cosh(4x)

4

]1

0

− 1

4

∫ 1

0

cosh(4x) dx

=

[
1 · cosh(4)

4
− 0 · cosh(0)

4

]
− 1

4

[
sinh(4x)

4

]1

0

=
cosh(4)

4
− 1

4

[
sinh(4)

4
− sinh(0)

4

]
sinh(0)=0

=
cosh(4)

4
− 1

4

[
sinh(4)

4
− 0

]
=

cosh(4)

4
− sinh(4)

16

Bemerkung.
Was ist mit

∫
1
x
dx?

Lösung :

f1 : (0,∞)→ R, x 7→ 1

x
⇒

∫
f1(x) dx = log(x) + C, C ∈ R

f2 : R \ {0} → R, x 7→ 1

x
⇒

∫
f2(x) dx = log |x|+ C, C ∈ R

Behauptung :
∫
f2(x)dx =

∫
1
x

= log |x|+ C, C ∈ R ⇒ (log |x|+ C)′ = 1
x
.
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Beweis :

(log |x|+ C)′ = log′ |x|(|x|)′

=
1

|x|
· (|x|)′

=

{
1
x
· 1, x > 0

−1
x
· −1, x < 0

=
1

x

Satz 12: (Substitution; Struwe 6.1.5)

Sei f : [a, b] → R stetig, F eine Stammfunktion von f , g : [α, β] → R der Klasse
C1([α, β]), sowie t0 ≤ t1 in [α, β], so dass g([t0, t1]) ⊂ [a, b]. Dann gilt:∫ t1

t0

F ′(g(t))g′(t)dt =

∫ t1

t0

f(g(t))g′(t)dt =

∫ g(t1)

g(t0)

f(x)dx.

Satz 13: (Substitution; Burger 5.4.6)

Sei a < b, φ : [a, b] → R stetig differenzierbar, I ⊂ R ein Intervall mit φ([a, b]) ⊂ I
und f : I → R eine stetige Funktion. Dann gilt:∫ φ(b)

φ(a)

f(x)dx =

∫ b

a

f(φ(t))φ′(t)dt.

Beispiel 3.4. Berechne

π2

4∫
0

cos(
√
x) dx.

Lösung :
Wir wählen die folgende Substitution:

u =
√
x

Gemäss Substitutionsregel führen wir die Variablensubstitution im Integranden durch,
dazu brauchen wir noch folgendes:

g(x) := u =
√
x

⇒ d

dx
(u) =

1

2
√
x

⇔ du =
1

2
√
x
dx

⇔ 2
√
x du = dx

⇔ 2u du = dx
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Jetzt können wir einsetzen:∫ π2

4

0

cos
(√

x
)
dx =

∫ g
(
π2

4

)
g(0)

2u cos(u) du

=

∫ √
π2

4

0

2u cos(y) du

=

∫ π
2

0

2u cos(y) du

Nun können wir das Integral mit der partiellen Integration lösen:

2

∫ π
2

0

u cos(u) du
PI
= 2

([
u sin(u)

]π
2

0
−
∫ π

2

0

sin(u) du

)

= 2

(
π

2
sin
(π

2

)
− (− cos(u))

∣∣∣π2
0

)
= 2

(
π

2
· 1 + cos(u)

∣∣∣π2
0

)
= 2

(π
2

+ cos
(π

2

)
− cos(0)

)
= 2

(π
2

+ 0− 1
)

= 2 · π
2
− 2

= π − 2

Bemerkung. (Substitution)
Folgend wird aufgelistet bei welchen Funktionen welche Substitutionen nützlich sein können:

(i) ex, sinh(x), cosh(x)
Substitution: t = eax, dx = dt

at
, sinh(x) = t2−1

2t
, cosh(x) = t2+1

2t

(ii) log(x)
Substitution: t = log(x), x = et, dx = etdt

(iii)
√
ax+ b, substituiere die Wurzel (am besten im Nenner)

Substitution:
√
x,
√
x+ 1→ t =

√
x; b

√
x→ t = b

√
x

(iv) cos2(x), sin2(x), ..., tan(x)
Substitution: t = tan(x), dx = 1

1+t2
dt, sin2(x) = t2

1+t2
, cos2(x) = 1

1+t2

(v) cos(x), sin(x), cos3(x), ...
Substitution: t = tan

(
x
2

)
, dx = 2

1+t2
dt, sin(x) = 2t

1+t2
, cos(x) = 1−t2

1+t2

(vi)
√
x2 + bx+ c im Zähler, benutze sin2(x) + cos2(x) = 1 oder cosh(x)− sinh(x) = 1∫ √

1− x2dx: substuiere mit x = sin(x), cos(x)∫ √
x2 − 1dx: substuiere mit x = cosh(x)∫ √
x2 + 1dx: substuiere mit x = sinh(x)

(vii)
√
a2 + b2x2

Substitution: x = a
b
·tan(t), dx = a

b cos2(t)
·dt oder x = a

b
·sinh(t), dx = a

b
·cosh(t) ·dt
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(viii)
√
b2x2 − a2

Substitution: x = 1
b cos(t)

, dx = a
b
· sin(t)

cos2(t)
· dt oder x = a

b
· cosh(t), dx = a

b
· sinh(t)dt
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