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1 Stetigkeit (Erinnerung)

Definition 1.1: (Struwe 4.2.2)

K C R"™ heisst kompakt, falls jede Folge (x,)neny € K einen Haufungspunkt in K
besitzt, d.h. falls eine Teilfolge A C IN und ein 2y € K existieren mit

n—o00, n€EA
Ty — Xp-

Bemerkung.
Eine Menge K C R™ heisst kompakt, falls sie beschrankt und abgeschlossen ist.

Beispiel 1.1 (Struwe 4.2.2).
(i) Das ”abgeschlossene” Intervall [0, 1] ist kompakt.
(ii) Das "offene” Intervall (0,1) ist nicht kompakt.

Die Beweise sind im Struwe Skript.

1.1 Stetigkeit

Definition 1.2: (Struwe 4.1.3)
Sei Q C RY, f:Q — R™
(i) f heisst stetig an der Stelle xq € 2, falls lim f(x) = f(zo) =: a existiert.

T—xQ
(ii) f heisst an der Stelle xo € Q\ Q stetig erginzbar, falls lim f(z) =: a existert.
Tr—xTQ

(In diesem Fall ist die duch f(zg) = a ergénzte Funktion f stegig an der Stelle
33'0.)

Definition 1.3: (Struwe 4.2.1)

Sei f:QCRY— R™
f heisst stetig auf €2, falls f in jedem Punkt xy € 2 stetig ist.

Definition 1.4: (Burger 3.2.1)

Sei D C R,zy € D. Die Funktion f: D — R ist in xo stetig, falls es fiir jedes € > 0
ein 6 > 0 gibt, so dass fiir alle z € D die Implikation

|2 — x| <6 = |f(x) = flzo)| <&

gilt.

Definition 1.5: (Burger 3.2.1 (Quantorenversion von oben))

Sei D C R,zg € D. Die Funktion f: D — R ist in xo stetig, falls

Ve > 0,36 >0: |z —xo] <0 = |f(x) — f(zo)| <&, VxeD



gilt.

1.2 Gleichmassige Stetigkeit
Definition 1.6: (Struwe 4.7.2)

f € — R" heisst gleichmdssig stetig, falls gilt

Ve >0, 35(e) =0 >0, Vo,y € Q: lz —yl <d=|f(z)— fly)] <e

Satz 1: (Struwe 4.7.3)

Sei 0 C R beschrinkt, f : Q — R” stetig und auf Q stetig ergéinzbar. Dann ist f
gleichmassig stetig.

Satz 2

Sei f: Q) — R stetig und €2 kompakt. Dann ist f gleichmassig stetig.

Bemerkung.
Diesen Satz kann man sich mit der folgenden Merkregel merken:

Stetigkeit auf einer kompakten Menge =  gleichmaéssige Stetigkeit.

Beispiel 1.2. Ist die Funktion f(z) = 5 gleichmissig stetig?

Losung:
Wir fixieren ein € > 0. Wir suche § > 0, sodass fiir alle z,y € Q mit |z — y| < § folgendes
gilt:

|f(@) = fy)| <e.

Fir z,y € [0, 00) gilt:

A ': xQ(y+1)—y2(x+1)‘
r+1 y+1 (@+ 1y +1)

22y + 2% — y?r —y?
(z+1)(y+1)
zy(r —y) +2° =y
(x+1)(y+1)
(z—y)+ (v —y)

(x4+1)(y+1

B Ty +x+y

-kl (5 5)
+

e Ty T Y
= o=yl ((x+1)(y+1) GrO+1) ($+1)(y+1))

Ty

x—i—y)‘




Weil #1 < 1 und y—i’_l < 1, gilt (IH";% < 1. Deshalb konnen wir die folgende Ab-

schatzung machen:

x? y? xy x y
— = |z —y| + +
r+1 y+1 @+Dy+1) (@+Dy+1) (@+y+1)
<1 <1 <1

<1
<lzr—y|ll+1+4+1)
= 3|z — y|

Somit folgt:
x? y? ! €
— <3Blzr—yl<e = |lx—y|l<==:0
s+l y+il— ==yl eyl <3

Da ¢ von z,y unabhéangig ist, folgt damit, dass f gleichmaéssig stetig ist.

1.3 Lipschitz-Stetigkeit
Definition 1.7: (Struwe 4.1.4)

Eine Funktion f : Q € RY — R" heisst Lipschitz stetig mit Lipschitzkonstante L, falls
gilt
If (@) = fWll < Lllz—yll, Vz,ye.

Satz 3

Eine differenzierbare Funktion f : 2 — R ist genau dann Lipschitz-stetig, wenn ihre
erste Ableitung auf {2 beschrankt ist.

Bemerkung.
Die verschiedenen Stetigkeiten hangen wie folgt von einander ab, wobei die Pfeile Imp-
likationen darstell

Ableitung beschrankt

2 kompakt

Beispiel 1.3. Ist die folgende Funktion Lipschit-stetig? Falls ja, bestimme die Lipschitz-
Konstante.

f:(-3,2) =R
v f(z) = 2%+ 4o — 1.



Losung:
Seien x,y € (—3,2) beliebig. Es gilt
[f(@) = fy)l = 2* + 4z — 1 — (y* + 4y — 1)

=|2* +4r —1—y* — 4y + 1|
= [a? + 4z — y* — 4y|
= [2? —y* + 4(z —y)|
=|(z—y)(@+y) +4(z —y)
= |z +y+4lz—yl

Fiir alle z,y € (—3,2) gilt nach der Dreiecksungleichung |z +y + 4| < |z| + |y| + 4 <
3+ 3+ 4 =10. Es ergitbt sich somit:

1f(x) = fw)] = |z +y+ 4|z —y| < 10[z —y].

Die Funktion ist demzufolge Lipschitz-stetig mit Lipschitz-Konstante L = 10.

2 Integration (I)

Definition 2.1: (Struwe 6.1.1)

Eine Funktion F' C C'([a, b]) hiesst Stammfunktion zu f falls gilt:

F'(z) = f(z) Vz € [a,b].

Definition 2.2

(i) Eine Partition (Zerlegung) vom kompakten Interval I = [a, b] mit a < b ist eine
endliche Teilmenge P C I mit P = {a = x, 21, ..., T, = b} mit ¢ < ... < z,.
Die Menge aller Partitionen von I bezeichnen wir mit

P(l):={P CI | a,be P, P istendlich}.

(ii) Die Feinheit der Zerlegung ist definiert durch

d(P) = max {|z; — z;—1|} mit n(P) :=n=|P|—1.

1<i<n

Bemerkung: §(P) ist die Lange des grossten Intervals [; = [x; 1, 2] mit 1 < ¢ <
n.

(iii) Seien &; € I; Zwischenpunkte (Stiitzstellen) mit z; 1 < & < x;. Jede Summe
der Form

S(f, P,€) : Zf& i — Ti1)

heisst Riemannsche Summe der Zerlegung P und £ € {&, ..., &}




Satz 4: (Struwe 6.2.1)

f monoton = f ist integrierbar.

Satz 5: (Struwe 6.2.2)

f stetig = f ist integrierbar.

Definition 2.3: (Obersumme)

n

S(f,P) = Z sup  f(&)(zi — xi-1)

i—1 §€lmi—1,73]

Definition 2.4: (Untersumme)

n

S(f,P)y:=7) inf f(&)(wi— i)

— £€(x;—1,34]
i=1

Definition 2.5: (Oberes Riemann-Integral)

/f(a:)d:c =inf{S(f,P) | P€P()}.

Definition 2.6: (Unteres Riemann-Integral)

b
/f@Mw:wm&ﬁmlPEPUH

Korollar 2.1: (Struwe 6.2.3)

Sei f : [a,b] — R eine beschriinkte und integrierbare Funktion. Sei {P(™} eine Folge
n—oo

von Partitionen des kompakten Intervals [a,b] mit 6(P™) 2= 0 und {¢(} eine
feste Wahl von Zwischenpunkten zur Partition P(™. Dann ist

b
| #a)da = lim (7, P, ).

Bemerkung.
Falls Korollar 6.2.3 erfiillt ist, wird f als Riemann-integrierbar auf [a,b] bezeichnet.

Bemerkung. .
Uniforme Partitionen P™ = {a = z¢, x4, ..., 7, } mit 7, = a + =9 ynd 7y — 2y, = =0

n n
ist eine Folge von Partitionen mit 6(P™) = =2 22%00.



1
Beispiel 2.1. Berechne das Integral [(2* — 22)dz explizit mit Hilfe von Riemannschen

Summen.

Losung:
Wir unterteilen das Integrationsinterval [0, 1] in n gleich grosse Teilintervalle der Lange
Az = L mit 2, = £, k = 1,...,n. Die Feinheit dieser Zerlegung ist 6(P) = 1. Es gilt

lim 6(P) = 0. Damit ist die Funktion f(z) = 2® — 2z Riemann-integrierbar und gemass
n—o0

der Definition des Riemann-Integrals (wir wihlen &, = zy) gilt:

1 1 n
/ f(z)dx = / (2 — 22)dr = lim Zf(fk)(xk — Tg_1)
0 0 n—oo Pt
= Ji%if (S) ;

— k=1
1 (nn+1)\° 2nn+1)
=lim —-(———) - ———~
n—oo n4 2 TL2 2
_ i n’(n+1)? n(n+1)
- nlaoo 4n4 n2
b (n+1)? nn+1)
n—oo  4n2 n2
ConP+2n+1 n?+n
= lim —
n—oco 4n? n2
1
- -1
4
B 3
=7

(*): Wir haben die folgenden Formeln benuntzt:
st < n+1)> k_n(n—i—l)
2

Bemerkung.
Die Kettenregel lautet:

(fog)(z) = f(g(x))d (z).
Damit ist (f o g)(z) = f(g(x)) eine Stammfunktion von f'(g(z))g'(z).

7



arctan® (z)
1422 d

Beispiel 2.2. Bestimme die Stammfunktion von [

Losung:

5
1
/ arctan’(z) , / arctan’() - 7
——

1+ 22
f(g(=z))

g'(z)

= éaretanﬁ(x) +C, vC € R.

Beispiel 2.3. Bestimme die Stammfunktion von [ %dw.
Losung:
gvz+l elog(3)vVr+1
——dr = | —
/ vr+1 vVr+1
Plog(BVaTT
- / T
2vr +1
=92 [ los®Vatl, ! dx

M 2z +1
fg(x)) ——
g(z)

_ 2 los(varT | C, VYCeR
log(3)
2
= —_.3Vrl L ¢ VC € R.
log(3) I ©

Satz 6: Hauptsatz der Differential und Integralrechung (Version A)

T

Sei f € C°%[a,b]). Setze F(z) = [ f(t)dt, x € [a,b].
Dann gilt F € C'((a,b)) mit F'(z) = f(x).

Satz 7: Hauptsatz der Differential und Integralrechung (Version B)

Sei f € C°%[a,b]), F eine Stammfunktion zu f.
Dann gilt:

b
/ f(z)dz = F(b) — F(a).

cos(x)
Beispiel 2.4. Sei A(z) = [ et)dt. Berechen A'(z).

-1



Losung:

=

K
~—~~ I~ —~
\_/\_/\&/ ~—

I

Q

@)

N

—

8

~—

= (Fo®)(x)
= F(&(x)) - ¢'()

arccos(cos(z)) | (

Al
=e —sin(z))

= —sin(x) - "

3 Integration (II)

Satz 8: (Monotonie des R-Integrals; Struwe 6.3.1)

Seien f, g : [a,b] — R, R-integrierbar mit f < g. Dann gilt:

[ 1w < [ gwaa

Satz 9: (Linearitdt des R-Integrals; Struwe 6.3.2)

Seien o, 5 € R, I = [a,b] und f,g: I — R zwei R-integriebare Funktionen. Dann ist
die Funktion af(z) + Bg(x) iiber [a, b] integrierbar und es gilt:

/abaf(x) + Bg(z)dr = Oz/abf(x)dx + ﬁ/abg(a:)da:.

Korollar 3.1: (Standardabschitzung; Struwe 6.3.1)

Sei f integrierbar iiber [a,b]. Dann ist | f| R-integrierbar und es gilt:

/ f(x)d S/ |f()]dx < (fel[lapb]wx)’) (b—a).

Satz 10: (Gebietsadditivitat; Struwe 6.3.3)

Sei f : [a,b] — R iiber [a,b] integrierbar. Sei ¢ € [a,b]. Dann sind f

/abf(m)dx _ /acf(x)dm—i— /be(x)d:p.

und f

[a,]

[e,b]
integrierbar und gilt:

Bemerkung.



e Konvention:

/abf(a:)da: S /baf(x)dx

/a " @)z =0

Satz 11: (Partielle Integration)

/ab f(@) - g(x)dx = [f(x)g(z)]z — /abf(:c) - ¢ (z)dz.

Herleitung:

uv = /(uv)'d:v

Produkteregel
= /(u’v—l—uv’)dm

Linearitt / u'vdr + / wv'dx
& /u’vdw = uv — /u'vdm

Beispiel 3.1. Berechne [ log®(z)dz.

Losung:
/logQ(x)dx = /log2(x) -1dz
1
2 log?(z) - — /210g(x) -—-xdx
x

= log*(z) -7 — 2 / log(z) dx

= log*(z) -z — 2 (/ log(x) - 1 d:p)

P:110g2($)-x—2(log(x)-:p—/i-xdx)
=log*(z) -z — 2 (log(z) -z —2)+C, C€R

= rlog’(z) — 2rlog(z) +2v +C, C€R

Beispiel 3.2. Berechne [ e**cos(z) dz.

Losung:

10



/62”6 cos(x) dx o2 sin(x) — 2 / e* sin(x) dx
2w sin(x) — 2 (62”(— cos(x)) — 2 / e (— cos(z)) dx)
= e sin(x) — 2 (62 (—cos(z)) + 2/6 cos(x) d:v)
= e**sin(x) + 2¢* cos(x) + 4 / %" cos(x
¢** cos(z) da = ¢** sin(z) + 2€** cos(z) + C, eR

2
e* cos(x) dr = 562”” sin(x) + 5621 cos(z)+C, CeR

1
Beispiel 3.3. Berechne [ xsinh(4z) dz.
0

Losung:

! [ h(4z)]! 1 h(4
/:Bsinh(élx)dx: ;,;M] _/ | cosh(da)
0 4 0 0 4

- :x'wr - i/ﬂl cosh(4z) dx
= :1 . cosh(4) ?)- COSh(O)} _711 {Sinh(zlx)]l

4 4 4

cosh(4) 1 {sinh(zl) sinh(O)}

0

4 4] 4 4

sinh(0)=0 cosh(4) 1 {sinh(él) O]

4 4
_cosh(4) sinh(4)

4 16

Bemerkung.
Was ist mit [ i dz?

Losung:
1
f1:(0,00) = R, - = /fl(x)dx:log(x)+0, CeR
1
fo: R \ {0} = R, T = /fg(as)dx:log|x|—l—(§’, CeR

Behauptung: [ fo(z)de = [ L =loglz|+C, CeR = (loglz|+C) =1

11



Beweis:
(log |z + C)" = log’ |z(|z])’

=] ()’

&|»—

-1, x>0
L.—1, <0

T

| 8l —

Il
8| = ——

Satz 12: (Substitution; Struwe 6.1.5)
Sei f : [a,b] — R stetig, F' eine Stammfunktion von f, ¢ : [a, f] — R der Klasse
Cl([a, B]), sowie tg < t; in [a, (], so dass g([to,t1]) C [a,b]. Dann gilt:

t1 t1 g(t1)
/ F(g(t))g'(£)dt = / Fla(®)g (t)dt = / f(z)dz.

to (to)

Satz 13: (Substitution; Burger 5.4.6)

Sel a < b, ¢ : [a,b] — R stetig differenzierbar, I C R ein Intervall mit ¢([a,b]) C I
und f : I — R eine stetige Funktion. Dann gilt:

o(b) b
/ f(@)de = / (68 (t)dt.
o(a) a

2

4
Beispiel 3.4. Berechne [ cos(y/z) dx.
0

Losung:
Wir wahlen die folgende Substitution:

=z

Gemass Substitutionsregel fiihren wir die Variablensubstitution im Integranden durch,
dazu brauchen wir noch folgendes:

1
& du=——=dx

& 2Vrdu=dx
& 2udu=dx

12



Jetzt konnen wir einsetzen:

/0 . cos(v/z) dr = /g (goiﬂ‘f) 2u cos(u) du

2

:/ ' 2u cos(y) du
0
= /2 2u cos(y) du

0

Nun konnen wir das Integral mit der partiellen Integration losen:

2 /0 : weos(u) du 22 ([u sin(u)]f - /0 : sin(u) du)
)

N

™

in(5) = (~ cos(w))

g
0

I
DO

I
N}
7~ N~
o |
<]
=

-1+ cos(u)

bo | 3

:2<g+cos<g> —cos(O))
:2(g+0—1>
ZQ.g_Q

=77—2

Bemerkung. (Substitution)
Folgend wird aufgelistet bei welchen Funktionen welche Substitutionen niitzlich sein konnen:
(i) €*,sinh(z), cosh(z)
L oz . 2_ 2
Substitution: ¢ = ¢, dx =%, sinh(z) = 52, cosh(z) = 5
(ii) log(x)
Substitution: ¢ = log(z),x = €', dx = e'dt
(iii) Vaz + b, substituiere die Wurzel (am besten im Nenner)
Substitution: /z, Vo +1—t=/1; Vo —t=/z

(iv) cos®(x), sin®(z),..., tan(z)
Substitution: ¢ = tan(z), dr = zdt, sin®(z) = lfr%, cos’(z) = o
(v) cos(z), sin(z), cos?(z), ...
2
Substitution: ¢ = tan(%), dr = {2gzdt, sin(z) = £, cos(z) = 5o

(vi) V22 + bz + ¢ im Zihler, benutze sin?(x) + cos?(x) = 1 oder cosh(z) — sinh(z) = 1
[ V1 — z2dz: substuiere mit x = sin(z), cos(x)
[ Vx? — 1dz: substuiere mit z = cosh(z)
[ Va? 4 1dx: substuiere mit 2 = sinh(x)

(vii) Va2 + b22?

Substitution: r = §-tan(t), dv = feozr "t oder x = g-sinh(t), dx = §-cosh(t)-dt

=

13



(viii) Vb?a2? — a?

Substitution: = = #S(t), dx = § - CS;:Q(ZQ) -dt oder v = ¢ - cosh(t), dx = §-sinh(t)dt

14



