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1 Reihen

Definition 1.1

o n [o.¢]
Die Reihe " ay konvergiert falls, lim S, = lim > ax =: > aj existiert.
b1 n—00 n—00 k=1 k=1

Bemerkung. (Rechnen mit Reihen)

Sei Y a, < 0o und b, < oo dann gilt:
n=1 k=1
(i) af < oo, VkeN
n=1

(i) > a2 +b2 <o
n=1

Bemerkung. (Endliche Summen)

Bemerkung. (Wichtige Reihen)
(i) Geometrische Reihe:

— . 1 )
. aonzzoq :aol_q, fur |q| < 1,

1— qN+1

N
° aOZq" =G0 fir |q| < 1.
n=0 q

(ii) Zeta-Funktion (fiir s = 1 erhalten wir die Harmonische Reihe):

0 divegiert, firs <1
C(s) =2 7 . )
n=1 konvergiert, fiir s > 1
(iii) Mengoli Reihe: n; wo = L

2 Konvergenzkriterien
1. lima,#0 = >, a, konvergiert nicht.
n—oo

2.



Satz 1: Majoranten/Minorantenkriterium
> ay divergiert = Y b, divergiert;

Sei a,, < by, fiir a,, b, > 0, falls { "0 n=0
> b, konvergiert = > a, konvergiert.
n=1 n=0

Beispiel 2.1. Zeige die Konvergenz der folgenden Reihen.

(i) Gegeben: Py o
Losung:
2”+1<2”+1_ 2\" \"
3n+1 - 3 \3 3
mit der geometrischen Reihe folgt die Konvergenz.
(ii) Gegeben: Z—:o (;Zgﬁgz.
Losung:
Ab einem gewissen ng gilt log(n) < /x.
2% log(n . n
g(n) n Z vn .
(2n+1)

— log(z)
D G S 2
2 — 2
n=0 (271 + 1) n=0 (2n - 1) n=ng+1
_ N~ _log(n) i Vn
< (2n+ 1) W 4n? +4n +1

log(n) -
tog(n) g~ v
4n?

2
(2n+1) W=

log(n)
Bt -\ L7 Z .
4nz

2
(2n+1) W

3
Il

VAN
NE

0

3
Il

n

o

n=0
Der erste Term konvergiert, da endliche Summe, der zweite Term konvergiert,
S o0
~L. Minorante von der harmonischen Reihe Y L % =5 >
n=ng+1 1?2

da > o

n=no+
1

= konvergiert.
3. Quotientenkriterium (bei!, x

no)
Das Quotientenkriterium zeigt absolute Konvergenz.

)

Satz 2: Quotientenkriterium



< 1, absolute Konvergenz

lim aZH = =1, keine Aussage
n—0o0 n
> 1, Divergenz.
Beispiel 2.2.
(i) Prife die Reihe ) 252 auf Konvergenz.
n=0
Losung:
i |9 — 5+(m+1) 107
n—oo | Qy, n—00 10n+1 54n
.1 6+4+n
= lim — -
n—oo 10 5+n
1 on(z+1)
= llm _ 5—
n—oo 10 (— + )
1 241
= lim — -3
11
10 1
_ ! <1
10

mit dem Quotientenkriterium folgt, dass die Reihe absolut Konvergent ist.

(ii) Priife die Reihe Y 2 auf Konvergenz.

n=1

Losung:

" n an
lim |2t | — gy (D)
n—oo | QA n—oo n+l n!
n 1
= lim (n+1) —
n—oo 2 n!
1 I. 1
o 17 (n+1)
n—oo 2 n!
= lim = - (n+1)
n—oo
1
—lim o
n—oo 2

mit dem Quotientenkriterium folgt, dass die Reihe divergiert.

n n

4. Wurzelkriterium (bei ()", 2", !, ...)
Das Wurzelkriterium zeigt absolute Konvergenz.



Satz 3: Wurzelkriterium

< 1, absolute Konvergenz

lim /|a,| = ¢ = keine Aussage
n—oo

> 1, Divergenz.

Beispiel 2.3.
(i) Konvergiert > (1 — %)"2?
n=1

Losung:

-<1

mit dem Wurzelkriterium folgt, dass die Reihe absolut Konvergent ist.

n"™ o

o0
(ii) Konvergiert El S |
n—=

Losung:

1 .

= — lim

2 n—oo A/n,
I

=—->1

mit dem Wurzelkriterium folgt, dass die Reihe divergiert.

5. Leibnitz-Kriterium (alternierende Reihen)

Satz 4: Leibnitz-Kriterium

Sei Y (—1)"a,, eine alternierende Reihe und ist



dann konvergiert > (—1)"a,,.

n=1

Beispiel 2.4. Konvergiert ) M?
n=1

n+1
Losung:
Es gilt:
( 7r> (—1)z, n gerade
cos(n—-) =
2 0, sonst
Wir betrachten also nur noch gerade Termen: z_: 2"27(;11)71
2n
li =1+#0
T
a, ist keine Nullfolge, somit divergiert die Reihe.
Beispiel 2.5. Priife die Reihe ) Cf’?(ﬂ) auf Konvergenz.
n=0

Losung:
Wegen cos(nm) = (—1)" schreiben wir die Reihe wie folgt um:

icos(mr) B i (—=1)"
il el

n=0

Priife die Bedingungen des Leibnitz-Kriteriums:

0 Jim =0

(ii) == >0

n2+1

= 2z <0 fiir alle > 0 gilt.

(iii) —= ist monoton fallend, weil %(J:Qil)z = — e

n2+1

o0
Die alternierende Reihe ) % ist somit gemaéss Leibnitz-Kriterium konvergent.
n=0

6. Absolute Konvergenz (auch bei alternierenden Reihen)

Satz 5: Absolute Konvergenz

o o
Z|an|<oo = Zan<oo.
n=1 n=1

Falls } a, absolut konvergiert, dann konvergiert auch die ungeordnete Reihe

n=1
absolut.
Beispiel 2.6. Priife die Reihe Sir;f!") auf Konvergenz.
n=0



Losung:
Wir betrachten die Reihe der Absolutbetrage

n!
n=0

sin(n)

n!

n=0

Nun verwenden wir das Majorantenkriterium, d.h. wir schitzen (1) mit |sin(n)| < 1

nach oben ab
L |sin(n)] o= 1
—_— < —. 2
nz% n! Zn! 2)

n=0

Mit Hilfe des Quotientenkriterium kénnen wir die Konvergenz von (2) zeigen.

Unt1| _ lim 1 n!

li —_—
- n—oo | (n+ 1) 1

n—o0

an
n!

= lim |[————

n—oo [nl- (n+1)

. 1
= lim

n>1

1m
=0<1

Somit konvergiert (2) absolut. Geméss dem Majoranten-Kriterium folgt damit auch,

dass (1) absolut konvergiert, also konvergiert auch S“;ﬁ
n=0
Potenzreihen
Definition 3.1
Eine Potenzreihe ist eine Reihe der Form
Z a, " = ag + a1x + asx® + ... + az" + ...
n=0

worin z eine reelle (oder komplexe) Variabe ist und (a, ), eine reelle (oder komplexe)
Folge ist.
Manchmal git man den allgemeineren Begriff einer Potzenzreihe mit einem Entwick-

lungspunkt zy an
o0

Z an(x — o)™

n=0

Definition 3.2

Der Konvergenzradius ist als das Supremum aller Zahlen p > 0 definiert, fiir welche



die Potenzreihe fur alls x mit |x — xy| < p konvergiert:

p = {|~’C—$o|

Satz 6: Konvergenzradius

o0
Z an(x — xo)" ist konvergent }

n=0

Fiir den Konvergenzradius p der Potenzreihe f(z) = > a,2™ gelten die folgenden
n=0
Formeln:

_Qn
an+1

(i) p= lim (bei !, z™, ...)

n—oo
(i) p Tp— (bei (-)™, z™,1,...).

Beweis von (1):

Wir wenden das Quotientenkriterium auf die Reihe ) a,2z" an. Wir erhalten absolute
n=0

Konvergenz, falls

+1

n
Ap41T Ap41l

n—00 Apn ™ QA

an+1

|z]

Qn

O
Beweis von (i1):

Wir wenden das Wurzelkriterium auf die Reihe ) a,2" an. Wir erhalten absolute Kon-
n=0

lim sup v/ |a,z"| = limsup v/|a,||z"|

n—o0 n—oo

= limsup v/|a,| v/ |z"|

n—oo

= limsup v/|a,| - |z|

n—oo

!
= |z| - lim sup v/]a,| < 1.

n—o0

1
. - =: p.
lim sup,, o, V/|an]|

vergenz, falls

& |z <



g

Bemerkung.

Beide Formeln folgen unmittelbar aus dem Quotienten- bzw. Wurzelkriterium fiir (i) bzw.
(ii).

Bemerkung.

Aus (i) und (ii) folgt wie beim Quotienten- und Wurzelkriterium die absolute Konver-
genz.

Bemerkung. (Wichtig)
Am Rand des Konvergenzkreises, d.h. fiir den Fall |x — x| = p ist keine Aussage iiber
die Konvergenz moglich. Deshalb muss man diesen Fall einzeln betrachten.

Beispiel 3.1. Fiir welche z € R konvergiert die folgende Potenzreihe?

3 L Vn24+n—+vn2+41 n(m—l—l)”
;nQ( )

Losung:



Wir berechnen den Konvergenzradius mit Hilfe von der Formel (ii):

p=limsup +/|a,|

n—oo

1
= limsup "|| — Vn2+n—vn2+1
n—00 n ~~

>0
: ol 1 n
= limsup \/—2 (\/n2+n—\/n2+1>
N—00 n
1
= lim sup — (\/n2+n—\/n2+1>
n—o0 77,2
1
= limsu —<\/n2—|—n—\/n2+1)
e (V)

Vn2+n+vn?+1
\/n2—|—n—\/n2+1)~
< V2 +n+vn?+1

1
= limsup ———

nse (V)2
I n?’4+n—(n*+1)

= lim su
el (V2 Ve +n+ 2+ 1
’ 1 n>+n—n?—-1
= limsu
n—mp (Vn)2/n2+n+vn2+1
1 n—1
= limsu
: n(l— 1)
= lim sup L

n—oo (V1) \/n2(1 + 5+ m2(1+ )
n(l—1)

—hmsup
n—=00 ]n[ 1+1 +|n| 1+n2
50 i
1msup
. a1 1)
1msup
o U (11 3)
1__
_hmsup
n—oo /]-‘I' /
1
12\/1+0+\/1+0
1
S 2
1

= p===2

Also konvergiert die Potenzreihe fiir |z + 1| < 2 (%) und divergiert fiir |z + 1| > 2. Nun
berechnen wir den Konvergenzbereich in Abhéngigkeit von z fir (x):

10



—
*
"

= —(z+1)=2
&S —r—1=2
& —r=3
& r=-3

[ ]
(Z*Q r+1=2
& =1

= |jz+1<2&2e(-31)

Jetzt miissen wir nur noch den Fall |z + 1| = 2 abdecken:

o

1 n .
_ 2 _ 2 n __Herleitung analog wie oben ausgefiihrt
> (\/n +n—+vn +1) (£2)

n=1

= i 1 Ly (£2)"
n=1

2
A1+ A

R (£2)(1-3)
S\l 1+
=1

=20
n=1

Damit haben wir eine konvergente Majorante. Also konvergiert die Potenzreihe fiir z = 1
und z = —3.

Zusammenfassend: Die Potenzreihe konvergiert absolut fiir x € [—3,1] und divergiert
sonst.

Beispiel 3.2. Bestimme den Konvergenzbereich von: (;Jlr)ln (22 — 1)
n=0

Losung:

Wir betrachten zuerst (;}r)ln y" () mit y := (2% — 1). Nun bestimmen wir den Konver-
n=0

11



genzradius mit Hilfe von der Formel (i):

n—oo an+1

Die Potenzreihe (x) konvergiert somit absolut fiir |y| < 1 und divergiert fiir |y| > 1. Nun
betrachten wir den Fall y = 1:

= (—1 = (~1
2 +)11”=Z§1+)1 (+4)

n=0 n=0

3

—~

3

(079 Z (n41 g Qp — Ap41 Z 0

1 1
& — >0
n+l (n+1)+17~
= 1 1 >0
n+1l n+2
n+2—(n+1)
= =
(n+1)(n+2)
2—nm—1
o n -+ n >0
(n+1)(n+2)
1
& >0

(n+1)(n+2)
= damit ist a,, monoton fallend

Leibnitz-Kriterium .
- (x%) konvergiert.

12



Jetzt betrachten wir den Fall y = —1:

Wir haben die harmonische Reihe erhalten und wissen deshalb, dass die Reihe in diesem
Fall divergiert. Damit konvergiert (%) fiir y € (—1,1]. Jetzt zum Schluss miissen wir
y = 2% — 1 riicksubstituiren und bekommen:

“1<y<1l & -—-l<z*-1<1
& 0<a?<?2

= B =[-V2,0)U(0,V2].
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