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1 Reihen
Definition 1.1

Die Reihe
∞∑
k=1

ak konvergiert falls, lim
n→∞

Sn = lim
n→∞

n∑
k=1

ak =:
∞∑
k=1

ak existiert.

Bemerkung. (Rechnen mit Reihen)

Sei
∞∑
n=1

an <∞ und
∞∑
k=1

bn <∞ dann gilt:

(i)
∞∑
n=1

akn <∞, ∀k ∈ N

(ii)
∞∑
n=1

√
a2n + b2n <∞

Bemerkung. (Endliche Summen)

(i)
n∑
k=1

k = n(n+1)
2

(ii)
n∑
k=1

2k = n(n+ 1)

(iii)
n∑
k=1

2k − 1 = n2

(iv)
n∑
k=1

1
k(k+1)

= n
n+1

Bemerkung. (Wichtige Reihen)

(i) Geometrische Reihe:

• a0

∞∑
n=0

qn = a0
1

1− q
, für |q| < 1,

• a0

N∑
n=0

qn = a0
1− qN+1

1− q
, für |q| < 1.

(ii) Zeta-Funktion (für s = 1 erhalten wir die Harmonische Reihe):

ζ(s) =
∞∑
n=1

1
ns

{
divegiert, für s ≤ 1

konvergiert, für s > 1

(iii) Mengoli Reihe:
∞∑
n=1

1
n(n+1)

= 1.

2 Konvergenzkriterien

1. lim
n→∞

an 6= 0 ⇒
∑∞

n=1 an konvergiert nicht.

2.
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Satz 1: Majoranten/Minorantenkriterium

Sei an ≤ bn, für an, bn > 0, falls


∞∑
n=0

an divergiert ⇒
∞∑
n=0

bn divergiert;

∞∑
n=1

bn konvergiert ⇒
∞∑
n=0

an konvergiert.

Beispiel 2.1. Zeige die Konvergenz der folgenden Reihen.

(i) Gegeben:
∞∑
n=0

2n+1
3n+1

.

Lösung:
2n + 1

3n + 1
≤ 2n + 1

3n
=

(
2

3

)n
+

(
1

3

)n
mit der geometrischen Reihe folgt die Konvergenz.

(ii) Gegeben:
∞∑
n=0

log(n)
(2n+1)2

.

Lösung:
Ab einem gewissen n0 gilt log(n) <

√
x.

∞∑
n=0

log(x)

(2n+ 1)2
≤

n0∑
n=0

log(n)

(2n+ 1)2
+

∞∑
n=n0+1

√
n

(2n+ 1)2

=

n0∑
n=0

log(n)

(2n+ 1)2
+

∞∑
n=n0+1

√
n

4n2 + 4n+ 1

≤
n0∑
n=0

log(n)

(2n+ 1)2
+

∞∑
n=n0+1

√
n

4n2

=

n0∑
n=0

log(n)

(2n+ 1)2
+

∞∑
n=n0+1

1

4n
3
2

Der erste Term konvergiert, da endliche Summe, der zweite Term konvergiert,

da
∞∑

n=n0+1

1

4n
3
2

Minorante von der harmonischen Reihe
∞∑

n=n0+1

1

n
3
2
, 3

2
= s >

1 ⇒ konvergiert.

3. Quotientenkriterium (bei !, xn, ...)
Das Quotientenkriterium zeigt absolute Konvergenz.

Satz 2: Quotientenkriterium
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lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =


< 1, absolute Konvergenz

= 1, keine Aussage

> 1, Divergenz.

Beispiel 2.2.

(i) Prüfe die Reihe
∞∑
n=0

5+n
10n

auf Konvergenz.

Lösung:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

5 + (n+ 1)

10n+1
· 10n

5 + n

= lim
n→∞

1

10
· 6 + n

5 + n

= lim
n→∞

1

10
·
n( 6

n
+ 1)

n( 5
n

+ 1)

= lim
n→∞

1

10
·

6
n

+ 1
5
n

+ 1

=
1

10
· 1

1

=
1

10
< 1

mit dem Quotientenkriterium folgt, dass die Reihe absolut Konvergent ist.

(ii) Prüfe die Reihe
∞∑
n=1

n!
2n

auf Konvergenz.

Lösung:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1)!

2n+1
· 2n

n!

= lim
n→∞

(n+ 1)!

2
· 1

n!

= lim
n→∞

1

2
· n! · (n+ 1)

n!

= lim
n→∞

1

2
· (n+ 1)

= lim
n→∞

n+ 1

2
> 1

mit dem Quotientenkriterium folgt, dass die Reihe divergiert.

4. Wurzelkriterium (bei (·)n, xn, !, ...)
Das Wurzelkriterium zeigt absolute Konvergenz.
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Satz 3: Wurzelkriterium

lim
n→∞

n
√
|an| =


< 1, absolute Konvergenz

= 1, keine Aussage

> 1, Divergenz.

Beispiel 2.3.

(i) Konvergiert
∞∑
n=1

(1− 1
n
)n

2
?

Lösung:

lim
n→∞

n

√(
1− 1

n

)n2

= lim
n→∞

(
1− 1

n

)n
= e−1

=
1

e
< 1

mit dem Wurzelkriterium folgt, dass die Reihe absolut Konvergent ist.

(ii) Konvergiert
∞∑
n=1

nn

2nn!
?

Lösung:

lim
n→∞

n

√(
nn

2nn!

)
= lim

n→∞

1

2

n
n
√
n

=
1

2
lim
n→∞

n
n
√
n︸ ︷︷ ︸

=e

=
e

2
> 1

mit dem Wurzelkriterium folgt, dass die Reihe divergiert.

5. Leibnitz-Kriterium (alternierende Reihen)

Satz 4: Leibnitz-Kriterium

Sei
∞∑
n=1

(−1)nan eine alternierende Reihe und ist

(i) lim
n→∞

an = 0

(ii) an ≥ 0

(iii) an monoton fallend,
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dann konvergiert
∞∑
n=1

(−1)nan.

Beispiel 2.4. Konvergiert
∞∑
n=1

n cos(nπ2 )
n+1

?

Lösung:
Es gilt:

cos
(
n
π

2

)
=

{
(−1)

n
2 , n gerade

0, sonst

Wir betrachten also nur noch gerade Termen:
∞∑
n=1

2n·(−1)n
2n+1

.

lim
n→∞

2n

2n+ 1
= 1 6= 0

an ist keine Nullfolge, somit divergiert die Reihe.

Beispiel 2.5. Prüfe die Reihe
∞∑
n=0

cos(nπ)
n2+1

auf Konvergenz.

Lösung:
Wegen cos(nπ) = (−1)n schreiben wir die Reihe wie folgt um:

∞∑
n=0

cos(nπ)

n2 + 1
=
∞∑
n=0

(−1)n

n2 + 1

Prüfe die Bedingungen des Leibnitz-Kriteriums:

(i) lim
n→∞

1
n2+1

= 0

(ii) 1
n2+1

≥ 0

(iii) 1
n2+1

ist monoton fallend, weil d
dx

1
(x2+1)2

= − 2x
(x2+1)2

≤ 0 für alle x ≥ 0 gilt.

Die alternierende Reihe
∞∑
n=0

cos(nπ)
n2+1

ist somit gemäss Leibnitz-Kriterium konvergent.

6. Absolute Konvergenz (auch bei alternierenden Reihen)

Satz 5: Absolute Konvergenz

∞∑
n=1

|an| <∞ ⇒
∞∑
n=1

an <∞.

Falls
∞∑
n=1

an absolut konvergiert, dann konvergiert auch die ungeordnete Reihe

absolut.

Beispiel 2.6. Prüfe die Reihe
∞∑
n=0

sin(n)
n!

auf Konvergenz.
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Lösung:
Wir betrachten die Reihe der Absolutbeträge

∞∑
n=0

∣∣∣∣sin(n)

n!

∣∣∣∣ n!>0
=

∞∑
n=0

| sin(n)|
n!

. (1)

Nun verwenden wir das Majorantenkriterium, d.h. wir schätzen (1) mit | sin(n)| < 1
nach oben ab

∞∑
n=0

| sin(n)|
n!

<
∞∑
n=0

1

n!
. (2)

Mit Hilfe des Quotientenkriterium können wir die Konvergenz von (2) zeigen.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ 1

(n+ 1)!

n!

1

∣∣∣∣
= lim

n→∞

∣∣∣∣ n!

n! · (n+ 1)

∣∣∣∣
= lim

n→∞

∣∣∣∣ 1

n+ 1

∣∣∣∣
n>1
= lim

n→∞

1

n+ 1

= 0 < 1

Somit konvergiert (2) absolut. Gemäss dem Majoranten-Kriterium folgt damit auch,

dass (1) absolut konvergiert, also konvergiert auch
∞∑
n=0

sin(n)
n!

.

3 Potenzreihen
Definition 3.1

Eine Potenzreihe ist eine Reihe der Form

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + ...+ anx
n + ...

worin x eine reelle (oder komplexe) Variabe ist und (an)nN eine reelle (oder komplexe)
Folge ist.
Manchmal git man den allgemeineren Begriff einer Potzenzreihe mit einem Entwick-
lungspunkt x0 an

∞∑
n=0

an(x− x0)n.

Definition 3.2

Der Konvergenzradius ist als das Supremum aller Zahlen ρ ≥ 0 definiert, für welche
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die Potenzreihe für alls x mit |x− x0| < ρ konvergiert:

ρ :=

{
|x− x0|

∣∣∣∣∣
∞∑
n=0

an(x− x0)n ist konvergent

}

Satz 6: Konvergenzradius

Für den Konvergenzradius ρ der Potenzreihe f(x) =
∞∑
n=0

anx
n gelten die folgenden

Formeln:

(i) ρ = lim
n→∞

∣∣∣ an
an+1

∣∣∣ (bei !, xn, ...)

(ii) ρ = 1

lim sup
n→∞

n
√
|an|

(bei (·)n, xn, !, ...).

Beweis von (i):

Wir wenden das Quotientenkriterium auf die Reihe
∞∑
n=0

anx
n an. Wir erhalten absolute

Konvergenz, falls

lim
n→∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1x

an

∣∣∣∣
= lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ |x|
= |x| · lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ !
< 1.

⇔ |x| < 1

limn→∞

∣∣∣an+1

an

∣∣∣
= lim

n→∞

∣∣∣∣ anan+1

∣∣∣∣ =: ρ.

�

Beweis von (ii):

Wir wenden das Wurzelkriterium auf die Reihe
∞∑
n=0

anx
n an. Wir erhalten absolute Kon-

vergenz, falls

lim sup
n→∞

n
√
|anxn| = lim sup

n→∞

n
√
|an||xn|

= lim sup
n→∞

n
√
|an|

n
√
|xn|

= lim sup
n→∞

n
√
|an| · |x|

= |x| · lim sup
n→∞

n
√
|an|

!
< 1.

⇔ |x| < 1

lim supn→∞
n
√
|an|

=: ρ.
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�

Bemerkung.
Beide Formeln folgen unmittelbar aus dem Quotienten- bzw. Wurzelkriterium für (i) bzw.
(ii).

Bemerkung.
Aus (i) und (ii) folgt wie beim Quotienten- und Wurzelkriterium die absolute Konver-
genz.

Bemerkung. (Wichtig)
Am Rand des Konvergenzkreises, d.h. für den Fall |x − x0| = ρ ist keine Aussage über
die Konvergenz möglich. Deshalb muss man diesen Fall einzeln betrachten.

Beispiel 3.1. Für welche x ∈ R konvergiert die folgende Potenzreihe?

∞∑
n=1

1

n2

(√
n2 + n−

√
n2 + 1

)n
(x+ 1)n

Lösung:
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Wir berechnen den Konvergenzradius mit Hilfe von der Formel (ii):

ρ̃ = lim sup
n→∞

n
√
|an|

= lim sup
n→∞

n

√√√√√√
∣∣∣∣∣∣∣

1

n2︸︷︷︸
>0

√n2 + n−
√
n2 + 1︸ ︷︷ ︸

≥0

n
∣∣∣∣∣∣∣

= lim sup
n→∞

n

√
1

n2

(√
n2 + n−

√
n2 + 1

)n
= lim sup

n→∞

1
n√
n2

(√
n2 + n−

√
n2 + 1

)
= lim sup

n→∞

1

( n
√
n)2

(√
n2 + n−

√
n2 + 1

)
= lim sup

n→∞

1

( n
√
n)2

(√
n2 + n−

√
n2 + 1

)
·
√
n2 + n+

√
n2 + 1√

n2 + n+
√
n2 + 1

= lim sup
n→∞

1

( n
√
n)2

n2 + n− (n2 + 1)√
n2 + n+

√
n2 + 1

= lim sup
n→∞

1

( n
√
n)2

n2 + n− n2 − 1√
n2 + n+

√
n2 + 1

= lim sup
n→∞

1

( n
√
n)2

n− 1√
n2 + n+

√
n2 + 1

= lim sup
n→∞

1

( n
√
n)2

n(1− 1
n
)√

n2(1 + 1
n
) +

√
n2(1 + 1

n2 )

= lim sup
n→∞

1

( n
√
n)2

n(1− 1
n
)

|n|
√

1 + 1
n

+ |n|
√

1 + 1
n2

n>0
= lim sup

n→∞

1

( n
√
n)2

n(1− 1
n
)

n
√

1 + 1
n

+ n
√

1 + 1
n2

= lim sup
n→∞

1

( n
√
n)2

n(1− 1
n
)

n
(√

1 + 1
n

+
√

1 + 1
n2

)
= lim sup

n→∞

1

( n
√
n)2

1− 1
n√

1 + 1
n

+
√

1 + 1
n2

=
1

12

1− 0√
1 + 0 +

√
1 + 0

=
1

2

⇒ ρ =
1

ρ̃
= 2

Also konvergiert die Potenzreihe für |x + 1| < 2 (∗) und divergiert für |x + 1| > 2. Nun
berechnen wir den Konvergenzbereich in Abhängigkeit von x für (∗):
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•

(∗)⇒ −(x+ 1) = 2

⇔ −x− 1 = 2

⇔ −x = 3

⇔ x = −3

•

(∗)⇒ x+ 1 = 2

⇔ x = 1

•

=⇒ |x+ 1| < 2⇔ x ∈ (−3, 1)

Jetzt müssen wir nur noch den Fall |x+ 1| = 2 abdecken:

∞∑
n=1

1

n2

(√
n2 + n−

√
n2 + 1

)n
(±2)n =Herleitung analog wie oben ausgeführt...

=
∞∑
n=1

1

n2

 1− 1
n√

1 + 1
n

+
√

1 + 1
n2

n

(±2)n

=
∞∑
n=1

1

n2

 (±2)(1− 1
n
)√

1 + 1
n

+
√

1 + 1
n2

n

≤
∞∑
n=1

1

n2

Damit haben wir eine konvergente Majorante. Also konvergiert die Potenzreihe für x = 1
und x = −3.
Zusammenfassend : Die Potenzreihe konvergiert absolut für x ∈ [−3, 1] und divergiert
sonst.

Beispiel 3.2. Bestimme den Konvergenzbereich von:
∞∑
n=0

(−1)n
n+1

(x2 − 1)n.

Lösung :

Wir betrachten zuerst
∞∑
n=0

(−1)n
n+1

yn (∗) mit y := (x2− 1). Nun bestimmen wir den Konver-
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genzradius mit Hilfe von der Formel (i):

ρ = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣
= lim

n→∞

∣∣∣∣ 1

n+ 1

(n+ 1) + 1

1

∣∣∣∣
= lim

n→∞

∣∣∣∣n+ 2

n+ 1

∣∣∣∣
n>0
= lim

n→∞

n+ 2

n+ 1

= lim
n→∞

n(1 + 2
n
)

n(1 + 1
n
)

= lim
n→∞

1 + 2
n

1 + 1
n

= 1

Die Potenzreihe (∗) konvergiert somit absolut für |y| < 1 und divergiert für |y| > 1. Nun
betrachten wir den Fall y = 1:

∞∑
n=0

(−1)n

n+ 1
1n =

∞∑
n=0

(−1)n

n+ 1
(∗∗)

(i) lim
n→∞

1
n+1

= 0

(ii) 1
n+1
≥ 0

(iii)

an ≥ an+1 ⇔ an − an+1 ≥ 0

⇔ 1

n+ 1
− 1

(n+ 1) + 1
≥ 0

⇔ 1

n+ 1
− 1

n+ 2
≥ 0

⇔ n+ 2− (n+ 1)

(n+ 1)(n+ 2)
≥ 0

⇔ n+ 2− n− 1

(n+ 1)(n+ 2)
≥ 0

⇔ 1

(n+ 1)(n+ 2)
≥ 0

⇒ damit ist an monoton fallend

Leibnitz-Kriterium
=⇒ (∗∗) konvergiert.
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Jetzt betrachten wir den Fall y = −1:

∞∑
n=0

(−1)n

n+ 1
(−1)n =

∞∑
n=0

(−1)2n

n+ 1

=
∞∑
n=0

1

n+ 1

=
∞∑
n=1

1

n

Wir haben die harmonische Reihe erhalten und wissen deshalb, dass die Reihe in diesem
Fall divergiert. Damit konvergiert (∗) für y ∈ (−1, 1]. Jetzt zum Schluss müssen wir
y = x2 − 1 rücksubstituiren und bekommen:

−1 < y ≤ 1 ⇔ −1 < x2 − 1 ≤ 1

⇔ 0 < x2 ≤ 2

=⇒ B = [−
√

2, 0) ∪ (0,
√

2].
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